$\underline{\mathbf{A}}$

PROJECT REPORT ON

ANALYSIS AND DESIGN OF MULTI STOREY(G+6) RESIDENTIAL BUILDING USING STAAD PRO

SUBMITTED BY

K. Hari Prasad	08241 A 0116
P.Praveen Reddy	08241 A 0128
V.Satish Kumar	08241 A 0140
B.Sandeep Reddy	09245 A 0104

PROJECT REPORT ON

ANALYSIS AND DESIGN OF MULTI STOREY(G+6) RESIDENTIAL BUILDING USING STAAD PRO

SUBMITTED BY

K. Hari prasad	08241 A 0116
P.Praveen Reddy	08241 A 0128
V.Satish Kumar	08241 A 0140
B.Sandeep Reddy	09245 A 0104

In the partial fulfilment of requirements for the award of, "Bachelor of Technology" Degree of JNTU during the year 2011-2012.

DEPARTMENT OF CIVIL ENGINEERING

GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY BACHUPALLY, HYDERBAD-72.

DECLARATION BY THE CANDIDATES

We, K.Hari Prasad, P.Praveen Reddy, V. Satish kumar,B.Sandeep reddy hereby declare that the project report entitled "Analysis and design of multistory(G+6) residential building using Staad Pro ", Under the guidance of Prof. Mode hussain sir is submitted in the fulfillment of the requirements for the MAIN-PROJECT. This is a bonafide work carried out by us and the results embodied in this project report have not been reproduced/copied from any source. The results embodied in this project report have not been submitted to any other university or institution for the award of any other degree or diploma.

Date:

Place:

ACKNOWLEDGEMENT

We would like to express my gratitude to all the people behind the screen who helped me to transform an idea into a real application.

We profoundly thank Mr. G.Venkataramana, Head of the Department of CIVIL Engineering who has been an excellent guide and also a great source of inspiration to my work.

We would like to thank my internal guide prof. mohd.hussain for his technical guidance, constant encouragement and support in carrying out my project at college.

We would like to tell a special thanks to external guide Mr.jasheel goud for her support in giving suggestions during the project .

The satisfaction and euphoria that accompany the successful completion of the task would be great but incomplete without the mention of the people who made it possible with their constant guidance and encouragement crowns all the efforts with success. In this context, We would like thank all the other staff members, both teaching and non-teaching, who have extended their timely help and eased my task.

K. Hari Prasad	08241 A 0116
P.Praveen Reddy	08241 A 0128
V.Satish Kumar	08241 A 0140
B.Sandeep reddy	09245 A 0104

CONTENTS page no
Abstracti
Assumptions and notations ii-iii
Symbols iv-v
Chapter 1: Introduction 1-11
1.1 Early modern and the industrial age 2-3
1.1.1 Modern architecture 3
1.2 Statement of the project 4
1.3 Literature review 5
1.3.1 Method of flexibility coefficients 5
1.3.2 Slope displacement equations 5-6
1.3.3 Kani's method 6-8
1.3.4 Approximate method 8-9
1.4 Design of multistoried residential building 10
1.4.1 Limit state method 11
Chapter 2: Software's 12-16
2.1 Staad 13
2.1 Alternatives for staad 14
2.2 Staad editor 14
2.3 Staad foundation 14-15
2.2 Auto cad 16
Chapter 3: Plan and Elevation 17-21
3.1 Plan 18
3.2 Elevation 19-21
chapter 4 : Loadings 22-38
4.1 Load conditions and structural system response 23
4.2 Building loads categorized by orientation 23
4.2.1 Horizontal (lateral) loads 23
4.2.2 Vertical loads 23-24
4.2.3 Lateral loads 24-25
4.3 Structural systems 25-26
4.4 Design loads for residential buildings 27
4.4.1 Dead loads 28
4.4.2 Live loads 29-30
4.4.3 Wind loads 31-33
4.4.3.1 Basic wind speed at 10 m for height for some important cities/town 34-36
4.4.4 Floor load 37
4.4.5 Load combinations 38
Chapter 5: Beams 39-48
5.1 Beam Design: 39
5.1.1 Singly reinforced beams: 39
5.1.2 Doubly reinforced concrete beams 39
5.3 Check for the Design of a beam 46-48
Chapter 6 Columns 49-57
6.1 Positioning of columns 50
6.2 Axial loaded columns 50
6.2.1 Axial load and uniaxial bending 50
6.2.2 Axial load and biaxial bending 51-52
6.3 Column design 53-54
6.4 Outputs
6.5 Check the Design of a columns 55-57
Chapter 7- Slabs 58-67
7.1 Design of slab 58-63
7.2 Manual calculations 63-67
Chapter 8: Footings 68-92
8.1 Foundation design 69-71
8.2 Dimensions and reinforcement details of all the footings 72-92
Chapter 9 Results
9.1 Staad Editor 93-117
9.3 Estimation 117
9.2 Diagrams For Bending Moment and Shear Force 118
9.3 Reference and Conclusions 119

ANALYSIS AND DESIGN OF A (G + 6) MULTI STOREY RESIDENTIAL

BUILDING USING STAAD PRO

Abstract

In order to compete in the ever growing competent market it is very important for a structural engineer to save time. as a sequel to this an attempt is made to analyze and design a Multistoried building by using a software package staad pro.

For analyzing a multi storied building one has to consider all the possible loadings and see that the structure is safe against all possible loading conditions.

There are several methods for analysis of different frames like kani's method, cantilever method, portal method, Matrix method.

The present project deals with the analysis of a multi storeyed residential building of $\mathrm{G}+6$ consisting of 5 apartments in each floor. The dead load \&live loads are applied and the design for beams, columns, footing is obtained

STAAD Pro with its new features surpassed its predecessors, and compotators with its data sharing capabilities with other major software like AutoCAD, and MS Excel.

We conclude that staad pro is a very powerful tool which can save much time and is very accurate in Designs.

Thus it is concluded that staad pro package is suitable for the design of a multistoried building.

Assumptions and Notations used:

The notations adopted throughout the work is same IS-456-2000.

Assumptions in Design:

1.Using partial safety factor for loads in accordance with clause 36.4 of IS-456-2000 as $\Upsilon_{\mathrm{t}}=1.5$
2.Partial safety factor for material in accordance with clause 36.4.2 is IS-456-2000 is taken as 1.5 for concrete and 1.15 for steel.
3.Using partial safety factors in accordance with clause 36.4 of IS-456-2000 combination of load.
D.L+L.L. $\quad 1.5$
D.L+L.L+W.L 1.2

Density of materials used:

MATERIAL:
i) Plain concrete
ii) Reinforced
iii) Flooring material(c.m)
iv) Brick masonry
v) Fly ash
4.LIVE LOADS: In accordance with IS. 875-86
i) Live load on slabs

$$
=\quad 20.0 \mathrm{KN} / \mathrm{m}^{2}
$$

ii) Live load on passage
iii)Live load on stairs

DENSITY

$24.0 \mathrm{KN} / \mathrm{m}^{3}$
$25.0 \mathrm{KN} / \mathrm{m}^{3}$
$20.0 \mathrm{KN} / \mathrm{m}^{3}$
$19.0 \mathrm{KN} / \mathrm{m}^{3}$
$5.0 \mathrm{KN} / \mathrm{m}^{3}$
$=4.0 \mathrm{KN} / \mathrm{m}^{2}$
$=4.0 \mathrm{KN} / \mathrm{m}^{2}$

DESIGN CONSTANTS:

Using M_{30} and Fe 415 grade of concrete and steel for beams, slabs, footings, columns.
Therefore:-
$\mathrm{f}_{\mathrm{ck}} \quad=\quad$ Characteristic strength for M30-30N/mm ${ }^{2}$
$\mathrm{f}_{\mathrm{y}} \quad=\quad$ Characteristic strength of steel $-415 \mathrm{~N} / \mathrm{mm}^{2}$

Assumptions Regarding Design:

i) Slab is assumed to be continuous over interior support and partially fixed on edges, due to monolithic construction and due to construction of walls over it.
ii) Beams are assumed to be continuous over interior support and they frame in to the column at ends.

Assumptions on design:-

1) M_{20} grade is used in designing unless specified.
2) Tor steel Fe 415 is used for the main reinforcement.
3) Tor steel Fe 415 and steel is used for the distribution reinforcement.
4) Mild steel Fe 230 is used for shear reinforcement.

Symbols:

The following symbols has been used in our project and its meaning is clearly mentioned respective to it:

A
 -Area

Ast

- Area of steel
b

D -Overall depth of beam or slab
$\mathrm{D}_{\mathrm{L}} \quad$-Dead load
$d^{1} \quad$-effective depth of slab or beam
D
$\mathrm{M}_{\mathrm{u}, \text { max }}$
F_{ck}
$\mathrm{F}_{\mathrm{y}} \quad$-characteristic strength of of steel
L_{d}
-devlopment length

LL
-live load
-length of shorter side of slab
L_{y}

- length of longer side of slab
B.M.
M_{u}
M_{d}
M_{f}
-modification factor
M_{x}
-mid span bending moment along short span

M_{y}	- mid span bending moment along longer span
$M^{\prime}{ }_{x}$	-support bending moment along short span
$\mathrm{M}^{\prime}{ }^{\prime}$	- support bending moment along longer span
p_{t}	-percentage of steel
W	-total design load
W_{d}	-factored load
$\mathrm{T}_{\mathrm{c} \text { max }}$	-maximum shear stress in concrete with shear
T_{v}	-shear stress in concrete
T_{v}	-nominal shear stress
ϕ	-diameter of bar
P_{u}	-factored axial load
$\mathrm{M}_{\mathrm{u}, \mathrm{lim}}$	-limiting moment of resistance of a section with out compression
	reinforcement
$\mathrm{M}_{\mathrm{ux},} \mathrm{M}_{\mathrm{uy}}$	-moment about X and Y axis due to design loads
$\mathrm{M}_{\mathrm{ux} 1}, \mathrm{M}_{\mathrm{uy} 1}$	maximum uniaxial moment capacity for an axial load of p_{u}, bending moment x and Y axis respectively
$\mathrm{A}_{\text {c }}$	
$\mathrm{A}_{\text {sc }}$	-area of longitudinal reinforcement for column

CHAPTER 1

 INTRODUCTIONBuilding construction is the engineering deals with the construction of building such as residential houses. In a simple building can be define as an enclose space by walls with roof, food, cloth and the basic needs of human beings. In the early ancient times humans lived in caves, over trees or under trees, to protect themselves from wild animals, rain, sun, etc. as the times passed as humans being started living in huts made of timber branches. The shelters of those old have been developed nowadays into beautiful houses. Rich people live in sophisticated condition houses.

Buildings are the important indicator of social progress of the county. Every human has desire to own comfortable homes on an average generally one spends his two-third life times in the houses. The security civic sense of the responsibility. These are the few reasons which are responsible that the person do utmost effort and spend hard earned saving in owning houses.

Nowadays the house building is major work of the social progress of the county. Daily new techniques are being developed for the construction of houses economically, quickly and fulfilling the requirements of the community engineers and architects do the design work, planning and layout, etc, of the buildings. Draughtsman are responsible for doing the drawing works of building as for the direction of engineers and architects. The draughtsman must know his job and should be able to follow the instruction of the engineer and should be able to draw the required drawing of the building, site plans and layout plans etc, as for the requirements.

A building frame consists of number of bays and storey. A multi-storey, multi-paneled frame is a complicated statically intermediate structure. A design of R.C building of $\mathrm{G}+6$ storey frame work is taken up. The building in plan ($40^{*} 28$) consists of columns built monolithically forming a network. The size of building is $40 \times 28 \mathrm{~m}$. The number of columns are 85 . it is residential complex.

The design is made using software on structural analysis design (staad-pro). The building subjected to both the vertical loads as well as horizontal loads. The vertical load consists of dead load of structural components such as beams, columns, slabs etc and live loads. The horizontal load consists of the wind forces thus building is designed for dead load, live load and wind load as per IS 875. The building is designed as two dimensional vertical frame and analyzed for the maximum and minimum bending moments and shear forces by trial and error methods as per IS 456-2000. The help is taken by software available in institute and the computations of loads, moments and shear forces and obtained from this software.

1.1 Early modern and the industrial age:

With the emerging knowledge in scientific fields and the rise of new materials and technology, architecture engineering began to separate, and the architect began to concentrate on aesthetics and the humanist aspects, often at the expense of technical aspects of building design.

Meanwhile, the industrial revolution laid open the door for mass production and consumption. Aesthetics became a criterion for the middle class as ornamental products, once within the province of expensive craftsmanship, became cheaper under machine production.

Vernacular architecture became increasingly ornamental. House builders could use current architectural design in their work by combining features found in pattern books and architectural journals.

1.1.1 Modern architecture:

The Bauhaus Dessau architecture department from 1925 by Walter Gropius.
The dissatisfaction with such a general situation at the turn of the $20^{\text {th }}$ century gave rise to many new lines of thought that served as precursors to modern architecture. Notable among these is detachers' derkbund, formed in 1907 to produce better quality machine made objects. The rise of the profession of industrial design is usually placed here. Following this lead, the Bauhaus school, founded in Weimar, Germany in 1919, redefined the architectural bounds prior set throughout history viewing the creation of a building as the ultimate synthesis-the apex-of art, craft and technology.

When modern architecture was first practiced, it was an avant-garde moment with moral, philosophical, and aesthetic underpinning. Immediately after world war I, pioneering modernist architects sought to develop a completely new style appropriate for a new post-war social and economic order, focused on meeting the needs of the middle and working classes. They rejected the architectural practice of the academic refinement of historical styles which served the rapidly declining aristocratic order.

1.2 Statement of project

Salient features:
Utility of building : residential complex
No of stories $: \quad \mathrm{G}+6$
Shape of the building : 5 APARTMENTS
No of staircases : 5
No. of flats: 30
No of lifts: 4
Type of construction: R.C.C framed structure
Types of walls : brick wall
Geometric details:
Ground floor : 3 m
Floor to floor height : 3 m .
Height of plinth : 0.6 m
Depth of foundation: 500 mm
Materials:
Concrete grade : M30
All steel grades: \quad Fe415 grade
Bearing capacity of soil: $\quad 300 \mathrm{KN} / \mathrm{M}^{2}$

1.3 Literature review:

Method of analysis of statistically indeterminate portal frames:

1. Method of flexibility coefficients.
2. Slope displacements methods(iterative methods)
3. Moment distribution method
4. Kane's method
5. cantilever method
6. Portal method
7. Matrix method
8. STAAD Pro

1.3.1 Method of flexibility coefficients:

The method of analysis is comprises reducing the hyper static structure to a determinate structure form by:

Removing the redundant support (or) introducing adequate cuts (or) hinges.

Limitations:

It is not applicable for degree of redundancy >3

1.3.2 Slope displacement equations:

It is advantageous when kinematic indeterminacy <static indeterminacy. This procedure was first formulated by axle bender in 1914 based on the applications of compatibility and equilibrium conditions.

The method derives its name from the fact that support slopes and displacements are explicitly comported. Set up simultaneous equations is formed the solution of these parameters and the joint moment in each element or computed from these values.

Limitations:

A solution of simultaneous equations makes methods tedious for manual computations. this method is not recommended for frames larger than too bays and two storey's. .

Iterative methods:

These methods involves distributing the known fixed and moments of the structural member to adjacent members at the joints in order satisfy the conditions of compatibility.

Limitations of hardy cross method:

It presents some difficulties when applied to rigid frame especially when the frame is susceptible to side sway. The method cannot be applied to structures with intermediate hinges.

1.3.3 Kani's method:

This method over comes some of the disadvantages of hardy cross method. Kani's approach is similar to H.C.M to that extent it also involves repeated distribution of moments at successive joints in frames and continues beams. However there is a major difference in distribution process of two methods. H.C.M distributes only the total joint moment at any stage of iteration.

The most significant feature of kani's method is that process of iteration is self corrective.

Any error at any stage of iterations corrected in subsequent steps consequently skipping a few steps error at any stage of iteration is corrected in subsequent consequently skipping a few steps of iterations either by over sight of by intention does not lead to error in final end moments.

Advantages:

It is used for side way of frames.

Limitations:

The rotational of columns of any storey should be function a single rotation value of same storey.
The beams of storey should not undergo rotation when the column undergoes translation. That is the column should be parallel.

Frames with intermediate hinges cannot be analysis.

Applicable

Not applicable

1.3.4 Approximate method:

Approximate analysis of hyper static structure provides a simple means of obtaining a quick

Solution for preliminary design. It makes Some simplifying assumptions regarding Structural behavior so to obtain a rapid solution to complex structures.

The usual process comprises reducing the given indeterminate configuration to a determine structural system by introducing adequate no of hinges. it is possible to sketch the deflected profile of the structure for the given loading and hence by locate the print inflection

Since each point of inflection corresponds to the location of zero moment in the structures. The inflection points can be visualized as hinges for the purpose of analysis. The solution of structures is sundered simple once the inflection points are located. The loading cases are arising in multistoried frames namely horizontal and vertical loading. The analysis carried out separately for these two cases.

Horizontal cases:

The behavior of a structure subjected to horizontal forces depends upon its heights to width ratio among their factor. It is necessary ti differentiate between low rise and high rise frames in this case.

Low rise structures:

Height < width
It is characterized predominately by shear deformation.
High rise buildings
Height $>$ width
It is dominated by bending action

Matrix analysis of frames:

The individual elements of frames are oriented in different directions unlike those of continues beams so their analysis is more complex .never the less the rudimentary flexibility and stiffness methods are applied to frames stiffness method is more useful because its adaptability to computer programming stiffness method is used when degree of redundancy is greater than degree of freedom. However stiffness method is used degree of freedom is greater than degree of redundancy especially for computers.

1.4 Design of multi storied residential building:

General:

A structure can be defined as a body which can resist the applied loads without appreciable deformations.

Civil engineering structures are created to serve some specific functions like human habitation ,transportation, bridges ,storage etc. in a safe and economical way. A structure is an assemblage of individual elements like pinned elements (truss elements), beam element ,column, shear wall slab cable or arch. Structural engineering is concerned with the planning, designing and thee construction of structures.

Structure analysis involves the determination of the forces and displacements of the structures or components of a structure. Design process involves the selection and detailing of the components that make up the structural system.

The main object of reinforced concrete design is to achieve a structure that will result in a safe economical solution.

The objective of the design is

1. Foundation design
2. Column design
3. Beam design
4. Slab design

These all are designed under limit state method

1.4.1 Limit state method:

The object of design based on the limit state concept is to achieve an acceptability that a structure will not become unserviceable in its life time for the use for which it is intended. I.e it will not rech a limit state. In this limit state method all relevant states must be considered in design to ensure a degree of safety and serviceability.

Limit state:

The acceptable limit for the safety and serviceability requirements before failure occurs is called a limit state.

Limit state of collapse:

This is corresponds to the maximum load carrying capacity.

Violation of collapse limit state implies failures in the source that a clearly defined limit state of structural usefulness has been exceeded. However it does not mean complete collapse.

This limit state corresponds to :
a) Flexural
b) Compression
c) Shear
d) Torsion

Limit state of survivability:

this state corresponds to development of excessive deformation and is used for checking member in which magnitude of deformations may limit the rise of the structure of its components.
a) Deflection
b) Cracking
c) Vibration

CHAPTER 2

 SOFTWARESThis project is mostly based on software and it is essential to know the details about these software's.

List of software's used

1. Staad pro(v8i)
2. Staad foundations 5(v8i)

3. Auto cad

Staad pro

Staad

Auto Cad

Foundations

STAAD

Staad is powerful design software licensed by Bentley .Staad stands for structural analysis and design

Any object which is stable under a given loading can be considered as structure. So first find the outline of the structure, where as analysis is the estimation of what are the type of loads that acts on the beam and calculation of shear force and bending moment comes under analysis stage. Design phase is designing the type of materials and its dimensions to resist the load. this we do after the analysis.

To calculate s.f.d and b.m.d of a complex loading beam it takes about an hour. So when it comes into the building with several members it will take a week. Staad pro is a very powerful tool which does this job in just an hour's staad is a best alternative for high rise buildings.

Now a days most of the high rise buildings are designed by staad which makes a compulsion for a civil engineer to know about this software.

These software can be used to carry rcc ,steel, bridge , truss etc according to various country codes.

2.1 Alternatives for staad:

struts, robot, sap, adds pro which gives details very clearly regarding reinforcement and manual calculations. But these software's are restricted to some designs only where as staad can deal with several types of structure.

2.2 Staad Editor:

Staad has very great advantage to other software's i.e., staad editor. staad editor is the programming

For the structure we created and loads we taken all details are presented in programming format in staad editor. This program can be used to analyze another structures also by just making some modifications, but this require some programming skills. So load cases created for a structure can be used for another structure using staad editor.

Limitations of Staad pro:

1.Huge output data
2.Even analysis of a small beam creates large output.
3.Unable to show plinth beams.

2.3 Staad foundation:

Staad foundation is a powerful tool used to calculate different types of foundations. It is also licensed by Bentley software's. All Bentley software's cost about 10 lakhs and so all engineers can't use it due to heavy cost.

Analysis and design carried in Staad and post processing in staad gives the load at various supports. These supports are to be imported into these software to calculate the footing details i.e., regarding the geometry and reinforcement details.

This software can deal different types of foundations

SHALLOW $(\mathrm{D}<\mathrm{B})$

- 1. Isolated (Spread) Footing
- 2.Combined (Strip) Footing
- 3.Mat (Raft) Foundation

DEEP ($\mathrm{D}>\mathrm{B}$)

- 1.Pile Cap
- 2. Driller Pier

1. Isolated footing is spread footing which is common type of footing.
2. Combined Footing or Strap footing is generally laid when two columns are very near to each other.
3. Mat foundation is generally laid at places where soil has less soil bearing capacity.
4. pile foundation is laid at places with very loose soils and where deep excavations are required. So depending on the soil at type we has to decide the type of foundation required.

Also lot of input data is required regarding safety factors, soil, materials used should be given in respective units.

After input data is give software design the details for each and every footing and gives the details regarding

1. Geometry of footing
2. Reinforcement
3. Column layout

4. Graphs

5. Manual calculations

These details will be given in detail for each and every column.
Another advantage of foundations is even after the design; properties of the members can be updated if required.

The following properties can be updated

- Column Position
- Column Shape
- Column Size
- Load Cases
- Support List

It is very easy deal with this software and we don't have any best alternative to this.

AutoCAD:

AutoCAD is powerful software licensed by auto desk. The word auto came from auto desk company and cad stands for computer aided design. AutoCAD is used for drawing different layouts, details, plans, elevations, sections and different sections can be shown in auto cad.

It is very useful software for civil, mechanical and also electrical engineer.
The importance of this software makes every engineer a compulsion to learn this software's.
We used AutoCAD for drawing the plan, elevation of a residential building. We also used AutoCAD to show the reinforcement details and design details of a stair case.

AutoCAD is a very easy software to learn and much user friendly for anyone to handle and can be learn quickly

Learning of certain commands is required to draw in AutoCAD.

CHAPTER 3

PLAN AND ELEVATION

PLAN

The auto cad plotting no. 1 represents the plan of a g+6 building. The plan clearly shows that it is a combination of five apartments. We can observe there is a combination between each and every apartments.

The Apartments are located at gachibouli which is surrounded by many apartments.
In each block the entire floor consists of a three bed room house which occupies entire floor of a block. It represents a rich locality with huge areas for each house.

It is a g+6 proposed building, So for 5 blocks we have $5^{*} 6=30$ flats.
The plan shows the details of dimensions of each and every room and the type of room and orientation of the different rooms like bed room, bathroom, kitchen, hall etc.. All the five apartments have similar room arrangement.

The entire plan area is about 1100 sq.m. There is some space left around the building for parking of cars. The plan gives details of arrangement of various furniture like sofa etc.

The plan also gives the details of location of stair cases in different blocks. we have 2 stair cases for each block and designing of stair case is shown in AutoCAD plot no. 3

In the middle we have a small construction which consists of four lifts and those who want to fly through lift can use this facility and we know for a building with more than $\mathrm{g}+4$ floors should compulsory have lift and the charges for the facilities is collected by all the members. At that junction we have a club for our enjoyment and charges are collected by all the building occupants every month.

So these represent the plan of our building and detailed explanation of remaining parts like elevations and designing is carried in the next sections.

Elevation:

AutoCAD plot no. 2 represents the proposed elevation of building. It shows the elevation of a $\mathrm{g}+6$ building representing the front view which gives the overview of a building block.

The figure represents the site picture of our structure which are taken at the site .the building is actually under constructions and all the analysis and design work is completed before the beginning of the project.

Each floor consists of height 3 m which is taken as per GHMC rules for residential buildings.
The building is not designed for increasing the number of floors in future.so the number of floors is fixed for future also for this building due to unavailability of the permissions of respective authorities.

Also special materials like fly ash and self compacted concrete were also used in order to reduce the dead load and increase life of the structure and also improve economy. But these materials were not considered while designing in staad to reduce the complexity and necessary corrections are made for considering the economy and safety of the structure as it is a very huge building with 30 apartments.

The construction is going to complete in the month of June 2012 and ready for the occupancy.
This is regarding the plan and details of the site and next section deals with the design part of the building under various loads for which the building is designed.

Figure 3.2a Elevation of the building

Center line plan

The above figure represents the center line diagram of our building in staad pro. Each support represents the location of different columns in the structure. This structure is used in generating the entire structure using a tool called transitional repeat and link steps. After using the tool the structure that is created can be analyzed in staad pro under various loading cases.

Below figure represents the skeletal structure of the building which is used to carry out the analysis of our building.

All the loadings are acted on this skeletal structure to carry out the analysis of our building.
This is not the actual structure but just represents the outline of the building in staad pro.
A mesh is automatically created for the analysis of these building.

Figure 3.2b $\underline{\text { Skeletal structure of the building }}$

CHAPTER 4

LOADINGS

4.1 Load Conditions and Structural System Response :

The concepts presented in this section provide an overview of building loads and their effect on the structural response of typical wood-framed homes. As shown in Table, building loads can be divided into types based on the orientation of the structural action or forces that they induce: vertical and horizontal (i.e., lateral) loads. Classification of loads are described in the following sections.

4.2 Building Loads Categorized by Orientation:

Types of loads on an hypothetical building are as follows.
> Vertical Loads
$>$ Dead (gravity)
$>$ Live (gravity)
> Snow(gravity)
$>$ Wind(uplift on roof)
$>$ Seismic and wind (overturning)
$>$ Seismic(vertical ground motion)

4.2.1 Horizontal (Lateral) Loads:

Direction of loads is horizontal w.r.t to the building.
$>$ Wind
$>$ Seismic(horizontal ground motion)
$>$ Flood(static and dynamic hydraulic forces
$>$ Soil(active lateral pressure)

4.2.2 Vertical Loads :

Gravity loads act in the same direction as gravity (i.e., downward or vertically) and include dead, live, and snow loads. They are generally static in nature and usually considered a uniformly distributed or concentrated load. Thus, determining a gravity load on a beam or column is a relatively simple exercise that uses the concept of tributary areas to assign loads to structural elements, including the dead load (i.e., weight of the construction) and any applied loads(i.e., live load). For example, the tributary gravity load on a floor joist would include the uniform floor load(dead and live) applied to the area of floor supported by the individual joist. The structural designer then selects a standard beam or column model to analyze bearing connection forces (i.e., reactions) internal stresses (i.e., bending stresses, shear stresses, and axial stresses) and stability of the structural member or system a for beam equations.

The selection of an appropriate analytic model is, however no trivial matter, especially if the structural system departs significantly from traditional engineering assumptions are particularly relevant to the structural systems that comprise many parts of a house, but to varying degrees. Wind uplift forces are generated by negative (suction) pressures acting in an outward direction from the surface of the roof in response to the aerodynamics of wind flowing over and around the building.

As with gravity loads, the influence of wind up lift pressures on a structure or assembly(i.e., roof) are analyzed by using the concept of tributary areas and uniformly distributed loads. The major difference is that wind pressures act perpendicular to the building surface (not in the direction of gravity) and that pressures vary according to the size of the tributary area and its location on the building, particularly proximity to changes in geometry (e.g., eaves, corners, and ridges).Even though the wind loads are dynamic and highly variable, the design approach is based on a maximum static load (i.e., pressure) equivalent. Vertical forces are also created by overturning reactions due to wind and seismic lateral loads acting on the overall building and its lateral force resisting systems, Earthquakes also produce vertical ground motions or accelerations which increase the effect of gravity loads. However, Vertical earthquake loads are usually considered to be implicitly addressed in the gravity load analysis of a light-frame building.

4.2.3 Lateral Loads:

The primary loads that produce lateral forces on buildings are attributable to forces associated with wind, seismic ground motion, floods, and soil. Wind and seismic lateral loads apply to the entire building. Lateral forces from wind are generated by positive wind pressures on the windward face of the building and by negative pressures on the leeward face of the building, creating a combined push and-pull effect. Seismic lateral forces are generated by a structure's dynamic inertial response to cyclic ground movement.

The magnitude of the seismic shear (i.e., lateral)load depends on the magnitude of the ground motion, the buildings mass, and the dynamic structural response characteristics(i.e., dampening, ductility , natural period of vibration ,etc).for houses and other similar low rise structures, a simplified seismic load analysis employs equivalent static forces based on fundamental Newtonian mechanics($\mathrm{F}=\mathrm{ma}$) with somewhat subjective(i.e., experience-based) adjustments to account for inelastic, ductile response characteristics of various building systems. Flood loads are generally minimized by elevating the structure on a properly designed foundation or avoided by not building in a flood plain.

Lateral loads from moving flood waters and static hydraulic pressure are substantial. Soil lateral loads apply specifically to foundation wall design, mainly as an "out-of-plane" bending load on the wall. Lateral loads also produce an overturning moment that must be offset by the dead load and connections of the building. Therefore, overturning forces on connections
designed to restrain components from rotating or the building from overturning must be considered.

Since wind is capable of the generating simultaneous roof uplift and lateral loads, the uplift component of the wind load exacerbates the overturning tension forces due to the lateral component of the wind load. Conversely the dead load may be sufficient to offset the overturning and uplift forces as is the case in lower design wind conditions and in many seismic design conditions.

4.3 Structural systems :

As far back as 1948, it was determined that "conventions in general use for wood, steel and concrete structures are not very helpful for designing houses because few are applicable"(NBS,1948).More specifically, the NBS document encourages the use of more advanced methods of structural analysis for homes. Unfortunately. the study in question and all subsequent studies addressing the topic of system performance in housing have not led to the development or application of any significant improvement in the codified design practice as applied to housing systems.

This lack of application is partly due to conservative nature of the engineering process and partly due to difficulty of translating the results of narrowly focused structural systems studies to general design applications. Since this document is narrowly scoped to address residential construction, relevant system

Based studies and design information for housing are discussed, referenced, and applied as appropriate. If a structural member is part of system, as it typically the case in light frame residential construction, its response is altered by the strength and stiffness characteristics of the system as a whole.

In general, system performance includes two basic concepts known as load sharing and composite action. Load sharing is found in repetitive member systems(i.e., wood framing) and reflects the ability of the load on one member to be shared by another or, in the case of a uniform load, the ability of some of the load on a weaker member to be carried by adjacent members. Composite action is found in assemblies of components that, when connected to one another, from a "composite member" with greater capacity and stiffness than the sum of the component parts.

However, the amount of composite action in a system depends on the manner in which the various elements are connected. The aim is to achieve a higher effective section modulus than the component members are taken separately. For example, when floor sheathing is nailed and glued to floor joists, the floor system realizes a greater degree of composite action than a floor with sheathing that is merely nailed; the adhesive between components helps prevents shear slippage, particularly if a rigid adhesive is used. Slippage due to shear stresses transferred
between the component parts necessitates consideration of partial composite action, which depends on the stiffness of an assembly's connections. Therefore, consideration of the floor system of fully composite T-beams may lead to an un conservative solution.

Whereas the typical approach of only considering the floor joist member without composite system effect will lead to a conservative design. This guide addresses the strengthenhancing effect of sharing and partial composite action when information is available for practical design guidance. Establishment of repetitive member increase factors (also called system factors) for general design use is a difficult task because the amount of system effect can vary substantially depending on system assembly and materials.

Therefore, system factors for general design use are necessarily conservative to cover broad conditions. Those that more accurately depict system effects also require a more exact description of and compliance with specific assembly details and material specifications. It should be recognized however that system effects do no t only affect the strength and stiffness of light-frame assemblies(including walls, floors and roofs).They also alter the classical understanding of how loads are transferred among the various assemblies of a complex woodframed home. For example, floor joists are sometimes doubled under non load-bearing partition walls "because of the added dead load and resulting stresses" determined in accordance with accepted engineering practice.

Such practice is based on a conservative assumption regarding a load path and the structural response. That is, the partition wall does create an additional load, but the partition wall is relatively rigid and actually acts as a deep beam, particularly when the top and bottom are attached to the ceiling and floor framing, respectively. As the floor is loaded and deflects, the interior wall helps resist the load. Of course, the magnitude of effect depends on the wall configuration (i.e., amount of openings) and other factor. The above example of composite action due to the interaction of separate structural systems or subassemblies points to the improved structural response of the floor system such that it is able to carry more dead and live than if the partition wall were absent .on whole-house assembly test has demonstrated this effect (Hurst,1965).Hence , a double joist should not be required under a typical non load-bearing partition; In fact, a single joist may not even be required directly below the partition, assuming that the floor sheeting is adequately specified to support the partition between the joists. While this condition cannot yet be duplicated in a standard analytic form conductive to simple engineering analysis, A designer should be aware of the concept when making design assumption regarding light frame residential constructions.

At this point, the readership should consider that the response of a structural system, Not just its individual elements, determines the manner in which a structure distributes and resists horizontal and vertical loads. For wood framed systems, the departure from calculations based are classical engineering mechanics (i.e., single members with standard tributary areas and assumed elastic behavior)and simplistic assumptions regarding load path can be substantial

4.4 Design loads for residential buildings :

General

Loads are a primary consideration in any building design because they define the nature and magnitude of hazards are external forces that a building must resist to provide a reasonable performance(i.e., safety and serviceability)through out the structure's useful life. The anticipated loads are influenced by a building's intended use (occupancy and function), configuration(size and shape) and location(climate and site conditions).Ultimately, the type and magnitude of design loads affect critical decisions such as material collection, construction details and architectural configuration.

Thus, to optimize the value (i.e., performance versus economy) of the finished product, it is essential to apply design loads realistically. While the buildings considered in this guide are primarily single-family detached and and attached dwellings, the principles and concepts related to building loads also apply to other similar types of construction, such as low-rise apartment buildings. In general, the the design loads recommended in this guide are based on applicable provisions of the ASCE 7 standard-Minimum Design ;loads for buildings and other structures (ASCE,1999).the ASCE 7 standard represents an acceptable practice for building loads in the United states and is recognized in virtually all U.S. building codes. For this reason, the reader is encouraged to become familiar with the provisions, commentary, and technical references contained in the ASCE 7 standard. In general structural design of housing has not been treated as a unique engineering discipline or subjected to a special effort to develop better, more efficient design practices. Therefore, this part of the guide focuses on those aspects aspects of ASCE 7 and other technical resources that are particularly relevant to the determination of design loads for residential structures.

The guide provides supplemental design assistance to address aspects of residential construction where current practice is either silent or in need of improvement. Residential buildings methods for determining design loads are complete yet tailored to typical residential conditions. as with any design function, the designer must ultimately understand and approve the loads for a given project as well as the overall design methodology, including all its inherent strengths and weakness.

Since building codes tend to vary in their treatment of design loads the designer should, as a matter of due diligence, identify variances from both local accepted practice and the applicable code relative to design loads as presented in this guide, even though the variances may be considered technically sound. Complete design of a home typically requires the evaluation of several different types of materials. Some material specifications use the allowable stress design (ASD) approach while others use load and resistance factor design (LRFD).

4.4.1 Dead Loads:

Dead loads consist of the permanent construction material loads compressing the roof, floor, wall, and foundation systems, including claddings, finishes and fixed equipment. Dead load is the total load of all of the components of the components of the building that generally do not change over time, such as the steel columns, concrete floors, bricks, roofing material etc.

In staad pro assignment of dead load is automatically done by giving the property of the member.
In load case we have option called self weight which automatically calculates weights using the properties of material i.e., density and after assignment of dead load the skeletal structure looks red in color as shown in the figure.

Fig 4.4.1a Example for calculation of dead load;

Dead load calculation
Weight=Volume x Density

Self weight floor finish $=0.12 * 25+1=3 \mathrm{kn} / \mathrm{m}^{\wedge} 2$
The above example shows a sample calculation of dead load.
Dead load is calculated as per IS 875 part 1

4.4.2 Live Loads:

Live loads are produced by the use and occupancy of a building. Loads include those from human occupants, furnishings, no fixed equipment, storage, and construction and maintenance activities. As required to adequately define the loading condition, loads are presented in terms of uniform area loads, concentrated loads, and uniform line loads. The uniform and concentrated live loads should not be applied simultaneously n a structural evaluation. Concentrated loads should be applied to a small area or surface consistent with the application and should b e located or directed to give the maximum load effect possible in enduse conditions. For example. The stair load of 300 pounds should be applied to the center of the stair tread between supports.

In staad we assign live load in terms of U.D.L .we has to create a load case for live load and select all the beams to carry such load. After the assignment of the live load the structure appears as shown below.

For our structure live load is taken as $\mathbf{2 5} \mathbf{N} / \mathbf{m m}$ for design.
Live loads are calculated as per IS 875 part 2

Fig 4.4.2a diagram of live load

4.4.3 Wind loads:

In the list of loads we can see wind load is present both in vertical and horizontal loads.
This is because wind load causes uplift of the roof by creating a negative(suction) pressure on the top of the roof

Fig 4.4.3a a diagram of wind load
wind produces non static loads on a structure at highly variable magnitudes. the variation in pressures at different locations on a building is complex to the point that pressures may become too analytically intensive for precise consideration in design. Therefore, wind load specifications attempt to amplify the design problem by considering basic static pressure zones on a building representative of peak loads that are likely to be experienced. The peak pressures in one zone for a given wind direction may not, However, occur simultaneously in other zones. For some pressure zones, The peak pressure depends on an arrow range of wind direction. Therefore, the wind directionality effect must also be factored into determining risk consistent wind loads on buildings.

In fact, most modern wind load specifications take account of wind load directionality and other effects in determining nominal design loads in some simplified form(sbcci,1999; ASCe,1999).this section further simplifies wind load design specifications to provide an easy yet effective approach for designing designing typical residential buildings. Because they vary substantially over the surface of a building. wind load star considered at two different scales. on large scale, the load produced on the overall building are on major structural systems that sustain wind loads from from more than one surface of building, are considered the main wind force resisting systems (MWFRS).the MWFRS of a home includes the shear walls, Diaphragms that create the lateral force resisting systems(LFRS).As well as the structural systems such as trusses that experience loads from two surfaces are regimes of the building.

The wind loads applied to the MWFRS account for the large affects of time varying wind pressures on the surface are surfaces of the building. On a Smaller scale, pressures are somewhat greater on localized surface area of the building, particularly near abrupt changes in building geometry (i.e., eaves, ridges, and corners). These higher wind pressures occur on smaller areas, particularly affecting the loads borne by components and cladding (e.g., sheathing, windows, doors, purling, studs).

The components and cladding (C\&C) transfer localized time-varying loads to the MWFRS, at which point the loads average out both spatially and temporally since, at a given time, some components may beat near peak loads while others are at substantially less than peak.

The next section presents a simplified method for determining both MWFRS and C\&C wind loads. Since the loads in the section 3.6.2 are determined for specific applications, the calculation of MWFRS and C\&C wind loads is implication the values provided. Design example 3.2 in section 3.10 demonstrate the calculation of wind loads by applying the simplified method of the following section 3.6.2to several design conditions associated with wind loads and the load combinations.

Century, modernism morphed into the international style, an aesthetic epitomized in many ways by the Twin Towers of New York's world trade center.

Many architects resisted modernism, finding it devoid of the decorative richness of ornamented styles. Yet as the of the movement lost influence in the late 1970s, postmodernism developed as a reaction against the austerity of Modernism. Robert ventures' contention that a "decorated shed" (an ordinary building which is functionally designed inside and embellished on the outside) was better than a "Duck" (a building in which the whole form and its function are tied together) gives an idea of this approach.

Assignment of wind speed is quite different compared to remaining loads.
We have to define a load case prior to assignment.

After designing wind load can be assigned in two ways

1. collecting the standard values of load intensities for a particular heights and assigning of the loads for respective height.
2. calculation of wind load as per IS 875 part 3.

We designed our structure using second method which involves the calculation of wind load using wind speed.

In Hyderabad we have a wind speed of 45 kmph for 10 m height and this value is used in calculation.

After the assignment of wind load the structure looks as shown in figure

4.4.3.1 Basic wind speed:

Gives basic wind speed of India, as applicable to 1 m height above means ground level for different zones of the country. Basic wind speed is based on peak just velocity averaged over a short time interval of about 3 seconds and corresponds to mean heights above ground level in an open terrain.

The wind speed for some important cities/towns is given table below.

4.4.3.2 Design wind speed:

The basic wind speed (Vb) for any site shall be obtained the following effects to get design wind velocity at any height (Vz) for the chosen structure.
a) Risk level
b) Terrain roughness, height and size of the structure and
c) Local topography

It can be mathematically expressed as follows:
Vs. $=\mathrm{Vb}^{*} \mathrm{~K} 1$ * K2* K3
Where
$\mathrm{Vz}=$ design wind speed at any height Z in m / s
$\mathrm{K} 1=$ probability factor (risk coefficient)

K2=terrain height and structure size factor and
$\mathrm{K} 3=$ topography factor

Table 4.4.3.3
Basic wind speed at 10 m for hight for some important cities/town:

CITIES SPEED	BASIC WIND $(\mathbf{m} / \mathbf{s})$	CITIES SPEED	BASIC WIND $\mathbf{(m / s)}$
Cuttack	50	Pune	39
Agra	47	Jhansi	47
Durbhanga	55	Raipur	39
Ahmadabad	39	Jodhpur	47
Darjeeling	47	Kajkot	39
Ajmer	47	Kanchi	47
Dehra dun	47	Roorkee	34
Alomar	47	Kurnool	39
Delhi	47	37	39
Amritsar	Rourkela		
Alanson			

Gangtok	47	Lakshadweep	39
Auragabad	39	Simla	39

			Srinagar
Gauhati	50	Ludhina	39
Bahraich	47	Surat	44
Gaya	39	Madras	50
Bangalore	33	Tiruchchirappalli	47
Gorakhpur	47	Madurai	39
Varanasi	47	Trivandrum	39
Hyderabad	44	Mandi	39
Bareilly	47	Mangalore	39
Impale	47	Vododara	44
Bhatinda	47	Moradabad	47
Jabalpur	39	Varanasi	33
Bhalali	47	Mysore	50
Jaipur	39	Vijayawada	50
Bhopal	47	44	
Jamshedpur	Bhuvaneshwar		

Bhuj	50	Vishakhapatnam	50
Bikaner	47	Naimital	47
Bikaro	47	Nasik	39
Bokaro	47	Nellore	50
Bombay	44	Panjim	39
Calcutta	50	Patiala	47

Calicut	47	Patna	47
Chandigarh	47	Pondicherry	50
Coimbatore	39	Por blair	44

figure 4.4.3.3b Wind Load

4.4.4 Floor load:

Floor load is calculated based on the load on the slabs. Assignment of floor load is done by creating a load case for floor load. After the assignment of floor load our structure looks as shown in the below figure.

The intensity of the floor load taken is: $\mathbf{0 . 0 0 3 5} \mathbf{N} / \mathbf{m m}^{\mathbf{2}}$
-ve sign indicates that floor load is acting downwards.

Fig 4.4.4.a Diagram of floor load

4.4.5 Load combinations:

All the load cases are tested by taking load factors and analyzing the building in different load combination as per IS456 and analyzed the building for all the load combinations and results are taken and maximum load combination is selected for the design

Load factors as per IS456-2000

Live load	dead load	wind load
1.5	1.5	0
1.2	1.2	1.2
0.9	0.9	0.9

When the building is designed for both wind and seismic loads maximum of both is taken. Because wind and seismic do not come at same time as per code.

Structure is analyzed by taking all the above combinations.

CHAPTER 5

BEAMS

Beams transfer load from slabs to columns .beams are designed for bending.
In general we have two types of beam: single and double. Similar to columns geometry and perimeters of the beams are assigned. Design beam command is assigned and analysis is carried out, now reinforcement details are taken.

5.1 Beam design:

a reinforced concrete beam should be able to resist tensile, compressive and shear stress induced in it by loads on the beam.

There are three types of reinforeced concrete beams
1.) single reinforced beams
2.) double reinforced concrete
3.) flanged beams

5.1.1 Singly reinforced beams:

In singly reinforced simply supported beams steel bars are placed near the bottom of the beam where they are more effective in resisting in the tensile bending stress. I cantilever beams reinforcing bars placed near the top of the beam, for the same reason as in the case of simply supported beam.

5.1.2 Doubly reinforced concrete beams:

It is reinforced under compression tension regions. The necessity of steel of compression region arises due to two reasons. When depth of beam is restricted. The strength availability singly reinforced beam is in adequate. At a support of continuous beam where bending moment changes sign such as situation may also arise in design of a beam circular in plan.

Figure shows the bottom and top reinforcement details at three different sections.
These calculations are interpreted manually.

STAAD.Pro Query Concrete Design

Beam no. 218
Design Code: IS-456

6\#16@33.00 0.00 To 6445.00

Design Load
Design Parameter

$\mathrm{Mz}(\mathrm{Kn}$ Met $)$	Distet	Load
92.300003	3.200000	5
-162.130005	0.000000	5
-175.589996	6.400000	5

$\mathrm{Fy}(\mathrm{Mpa})$	415.000000
$\mathrm{Fc}(\mathrm{Mpa})$	30.000000
Depth(mm)	299.999395
Width(mm)	399.999201
Length(mm)	6444.987183

Fig 5.2a A_diagram of the reinforcement details of beam

The following figure shows the deflection of a column.

Deflection:

STAAD.Pro Query Deflection Result

Beam no. 131
Deflection in Global X axis. Load case 5.

Distmm	$X($ in $)$	$Y(i n)$	$Z(i n)$
0.000000	0.0000	0.0000	0.0000
249.999491	-0.0008	-0.0049	0.0002
499.998983	-0.0025	-0.0099	0.0011
749.998474	-0.0048	-0.0148	0.0025
999.997965	-0.0072	-0.0198	0.0046
1249.997457	-0.0094	-0.0247	0.0074
1499.996948	-0.0110	-0.0297	0.0109
1749.996440	-0.0117	-0.0346	0.0153
1999.995931	-0.0112	-0.0396	0.0205
2249.995422	-0.0091	-0.0445	0.0266
2499.994914	-0.0049	-0.0494	0.0337
2749.994405	0.0016	-0.0544	0.0417
2999.993896	0.0107	-0.0593	0.0508

Fig 5.2b A diagram of the deflection of a column.

Due to huge output data, output of a sample beam is shown below.
Beam design

SUMMARY OF REINF. AREA (Sq.mm)

SECTION
TOP
воттом STIRRUPS
(in mm) | Reqd./Provided reinf. | Reqd./Provided reinf. | (2 legged)
0.0 | 2102.75/2211.68(11-16í)| 625.79/ 804.25(4-16í)| 8í
@ 140 mm
537.1 | 1151.51/1206.37(6-16í)| 265.73/ 603.19(3-16í)| 8í
@ 140 mm
1074.2 | 422.27/ 603.19(3-16í)| 260.79/ 603.19(3-16í)| 8í
@ 140 mm 1611.2 | 218.75/ 603.19(3-16í)| 425.58/ 603.19(3-16í)| 8í @ 140 mm 2148.3 | 218.75/ 603.19($3-16 i ́ ~)|~ 756.82 / 804.25(4-16 i ́ ~)| ~ 8 i ́ ~$ @ 140 mm $2685.4|0.00 / 402.12(2-16 i ́ ~)| 1042.62 / 1206.37(6-16 i ́ ~) \mid 8 i ́$
@ 140 mm 3222.5 | $0.00 / 402.12(2-16 i ́ ~)|1133.58 / 1206.37(6-16 i ́ ~)| 8 i ́$ @ 140 mm 3759.6 | 218.75/ 603.19(3-16í)| 1010.85/1206.37(6-16í)| 8í @ 140 mm 4296.7 | 218.75/ 603.19($3-16 i ́ ~)|~ 699.37 / 804.25(4-16 i ́ ~)| ~ 8 i ́ ~$ @ 140 mm 4833.8 | 218.75/ 603.19($3-16 i ́ ~)|368.27 / 603.19(3-16 i ́ ~)| ~ 8 i ́ ~$ @ 140 mm 5370.8 | 481.59/ 603.19(3-16í)| 240.74/ 603.19(3-16í)| 8í @ 140 mm 5907.9 | 1254.86/1407.43(7-16í)| 242.95/ 603.19(3-16í)| 8í @ 140 mm
6445.0 | 2284.09/2412.74(12-16í)| 826.67/1005.31(5-16í)| 8í @ 140 mm

SHEAR DESIGN RESULTS AT DISTANCE d (EFFECTIVE DEPTH) FROM FACE OF THE SUPPORT

shear

STAAD.Pro Query Bending and Shear Results
Bending about Z for Beam 218

Distmm	Fy(N)	Mz(kip-in)
0.000000	154555.0864	1434.9900
537.082265	131379.4330	754.7840
1074.164530	106689.3721	188.3447
1611.246796	80484.9035	-257.1290
2148.329061	53040.4566	-574.7001
2685.411326	25476.0760	-761.3173
3222.493591	-2088.3047	-816.9051
3759.575857	-29652.6853	-741.4635
4296.658122	-57217.0660	-534.9924
4833.740387	-84661.5129	-197.5675
5370.822652	-110865.9814	267.7601
5907.904918	-135556.0424	854.0532
6444.987183	-158731.6957	1554.1130

Fig 5.2c A diagram of the shear force of a column.

5.3 Check for the design of a beam (no. 230):

Given data:

Cross section of beam : bx d $=300 \mathrm{~mm} \times 400 \mathrm{~mm}$
Vertical shear force $=v_{u}=145.93 \mathrm{KN}$
$\tau_{\mathrm{c}}=0.29 \mathrm{~N} / \mathrm{mm}^{2}$ (from table 19 of IS 456 200)

Minimum Shear Reinforcement:

When τ_{v} is less than τ_{c}, given in Table 19, minimum shear reinforcement shall -be provided

Design of Shear Reinforcement:

When τ_{v} exceeds τ_{c}, given in Table 19, shear reinforcement shall be provided in any of the following forms:
a) Vertical stirrups,
b) Bent-up bars along with stirrups, and
c) Inclined stirrups,
$\tau_{\mathrm{v}}=\mathrm{v}_{\mathrm{u}} /(\mathrm{b} \times \mathrm{d}) \quad$ (As per clause 40.1 of IS 456-2000)
$=145.93 \times 10^{3} /(400 \times 300)$
$=1.216 \mathrm{~N} / \mathrm{mm}^{2}$
$\tau_{\mathrm{v}} \geq \tau_{\mathrm{c}}$
design reinforcement Vus $=\mathrm{Vu}-\tau_{\mathrm{c}} \mathrm{xbxd} \quad($ As per clause 40.4 of IS 456-2000)

$$
\begin{aligned}
& =145.93 \times 10^{3}-0.29 \times 400 \times 300 \\
& =111100 \mathrm{~N}
\end{aligned}
$$

Shear reinforcement shall be provided to carry a shear equal to $\boldsymbol{V u}-\boldsymbol{\tau}_{\mathrm{c}} \boldsymbol{b d}$ The strength of shear reinforcement Vus, shall be calculated as below:

For vertical stirrups:

Vus $=\mathbf{0 . 8 7} \mathbf{f} \mathbf{f} \mathbf{A s v d} / \mathbf{S v} \quad$ (As per clause 40.4 of IS 456-2000)

Asv $=$ total cross-sectional area of stirrup legs or bent-up bars within a distance Sv.

Sv = spacing of the stirrups or bent-up bars along the length of the member,
$\tau_{\mathrm{v}}=$ nominal shear stress
$\tau_{\mathrm{c}}=$ design shear strength of the concrete,
$\mathbf{b}=$ breadth of the member which for flanged beams, shall be taken as the breadth of the web $b w$,
fy $=$ characteristic strength of the stirrup or bent-up reinforcement which shall notbe taken greater than $415 \mathrm{~N} / \mathrm{mm}^{2}$,
$\boldsymbol{\alpha}=$ angle between the inclined stirrup or bent- up bar and the axis of the member, not less than 45", and
$\mathbf{d}=$ effective depth.
$111130 \mathrm{~N}=0.87 \times 415 \times 2 \times \pi \times 8^{2} \times 400 / S v$
$\mathrm{Sv}=140 \mathrm{~mm}$
Sv should not be more than the following

1. $0.75 \mathrm{xd}=0.75 \times 400=300 \mathrm{~mm}$
2. 300 mm
3. Minimum shear reinforcement spacing $=$ Svmin

Minimum shear reinforcement:

Minimum shear reinforcement in the form of stirrups shall be provided such that:
$\mathrm{Asv} / \mathrm{bSv} \geq 0.4 / 0.87 \mathrm{fy} \quad$ (As per clause 26.5.1.6 of IS 456-2000)

Asv $=$ total cross-sectional area of stirrup legs effective in shear,
$\mathrm{Sv}=$ stirrup spacing along the length of the member,
$b=$ breadth of the beam or breadth of the web of flanged beam, and
fy $=$ characteristic strength of the stirrup reinforcement in N/mm* which shall not be taken greater than $415 \mathrm{~N} / \mathrm{mn}^{2}$
$\mathrm{S}_{\mathrm{v}}=2 \mathrm{x}(\pi / 4) \times 8^{2} \times 0.87 \times 415 /(0.4 \times 300)$
$=302 \mathrm{~mm}$.

Provided 2 legged 8mm@140mm strirrups .

Hence matched with staad output.

CHAPTER 6

COLUMNS

A column or strut is a compression member, which is used primary to support axial compressive loads and with a height of at least three it is least lateral dimension.

A reinforced concrete column is said to be subjected to axially loaded when line of the resultant thrust of loads supported by column is coincident with the line of C.G of the column I the longitudinal direction.

Depending upon the architectural requirements and loads to be supported,R.C columns may be cast in various shapes i.e square ,rectangle, and hexagonal ,octagonal, circular.Columns of L shaped or T shaped are also sometimes used in multistoried buildings.

The longitudinal bars in columns help to bear the load in the combination with the concrete. The longitudinal bars are held in position by transverse reinforcement, or lateral binders.

The binders prevent displacement of longitudinal bars during concreting operation and also check the tendency of their buckling towards under loads.

6.1 Positioning of columns:

Some of the guiding principles which help the positioning of the columns are as follows:-
A) Columns should be preferably located at or near the corners of the building and at the intersection of the wall, but for the columns on the property line as the following requirements some area beyond the column, the column can be shifted inside along a cross wall to provide the required area for the footing with in the property line. alternatively a combined or a strap footing may be provided.
B) The spacing between the column is governed by the lamination on spans of supported beams, as the spanning of the column decides the the span of the beam. As the span of the of the beam increases, the depth of the beam, and hence the self weight of the beam and the total.

Effective length:

The effective length of the column is defined as the length between the points of contraflexure of the buckled column. The code has given certain values of the effective length for normal usage assuming idealized and conditions shown in appendix D of IS 456(table 24)

A column may be classified based as follows based on the type of loading:

1) Axially loaded column
2) A column subjected to axial load and uneasily bending
3) A column subjected to axial load and biaxial bending.

6.2 Axially loaded columns:

All compression members are to be designed for a minimum eccentricity of load into principal directions. In practice, a truly axially loaded column is rare , if not nonexistent. Therefore, every column should be designed for a minimum eccentricity .clause 22.4 of IS code

$$
\mathrm{E}_{\min }=(\mathrm{L} / 500)+(\mathrm{D} / 300), \text { subjected to a minimum of } 200 \mathrm{~mm} .
$$

Where L is the unsupported length of the column (see 24.1.3 of the code for definition unsupported length) and D is the lateral dimension of the column in the direction under the consideration.

6.2.1 Axial load and uniaxial bending:

A member subjected to axial force and bending shall be designed on the basis of

1) The maximum compressive strength in concrete in axial compression is taken as 0.002
2) The maximum compressive strength at the highly compressed extreme fiber in concrete subjected to highly compression and when there is no tension on the section shall be 0.0035-0.75 times the strain at least compressed extreme fiber.

Design charts for combined axial compression and bending are in the form of intersection diagram in which curves for $P_{u} / f_{c k} b D$ verses $M_{u} / f_{c k} b D^{2}$ are plotted for different values of $\mathrm{p} / \mathrm{f}_{\mathrm{ck}}$ where p is reinforcement percentage.

6.2.2 Axial load and biaxial bending:

The resistance of a member subjected to axial force and biaxial bending shall be obtained on the basis of assumptions given in 38.1 and 38.2 with neutral axis so chosen as to satisfy the equilibrium of load and moment about two weeks.

Alternatively such members may be designed by the following equation:
$\left(\mathrm{M}_{\mathrm{ux}} / \mathrm{M}_{\mathrm{uy}}\right)^{\mathrm{an}}+\left(\mathrm{M}_{\mathrm{uy}} / \mathrm{M}_{\mathrm{uy}}\right)^{\mathrm{an}}<=1.0$
$\mathrm{M}_{\mathrm{ux}} \& \mathrm{M}_{\mathrm{uy}}=$ moment about x and Y axis due to design loads
$\mathrm{M}_{\mathrm{ux} 1} \& \mathrm{M}_{\mathrm{uy} 1}=$ maximum uniaxial moment capacity for an axial load of P_{u} bending about x and y axis respectively.
αn is related to $P_{u} / p_{u z}$
$\mathrm{p}_{\mathrm{uz}}=0.45 * \mathrm{f}_{\mathrm{ck}} * \mathrm{~A}_{\mathrm{c}}+0.75 * \mathrm{f}_{\mathrm{y}} * \mathrm{~A}_{\mathrm{sc}}$
For values of $\mathrm{p}_{\mathrm{u}} / \mathrm{P}_{\mathrm{uz}}=0.2$ to 0.8 , the values of α vary linearly from 1.0 to 2.0 for values less than $0.2, \alpha n$ is values greater than $0.8, \alpha_{\mathrm{n}}$ is 2.0

The main duty of column is to transfer the load to the soil safely.columns are designed for compression and moment. The cross section of the column generally increase from one floor to another floor due to the addition of both live and dead load from the top floors. Also the amount if load depends on number of beams the columns is connected to. As beam transfer half of the load to each column it is connected.

6.3 Column design:

A column may be defined as an element used primary to support axial compressive loads and with a height of a least three times its lateral dimension. The strength of column depends upon the strength of materials, shape and size of cross section, length and degree of proportional and dedicational restrains at its ends.

A column may be classify based on deferent criteria such as
1.) shape of the section
2.) slenderness ratio $(A=L+D)$
3.) type of loading, land
4.) pattern of lateral reinforcement.

The ratio of effective column length to least lateral dimension is released to as slenderness ratio.

In our structure we have 3 types of columns.

- Column with beams on two sides
- Columns with beams on three sides
- Columns with beams on four sides

So we require three types of column sections. So create three types of column sections and assign to the respective columns depending on the connection. But in these structure we adopted same cross section throughout the structure with a rectangular cross section .In foundations we generally do not have circular columns if circular column is given it makes a circle by creating many lines to increase accuracy.

The column design is done by selecting the column and from geometry page assigns the dimensions of the columns. Now analyze the column for loads to see the reactions and total loads on the column by seeing the loads design column by giving appropriate parameters like

1. Minimum reinforcement, max, bar sizes, maximum and minimum spicing.
2. Select the appropriate design code and input design column command to all the column.
3. Now run analysis and select any column to collect the reinforcement details

The following figure shows the reinforcement details of a beam in staad.
The figure represents details regarding

1. Transverse reinforcement

2. Longitudinal reinforcement

The type of bars to be used, amount of steel and loading on the column is represented in the below figure.

STAAD.Pro Query Concrete Design

Beam no. 131
Design Code: IS-456

Design Load

Load	9
Location	End 1
$\mathrm{Pu}(\mathrm{Kns})$	76.760002
$\mathrm{Mz}(\mathrm{Kns}-\mathrm{Mt})$	75.889999
$\mathrm{My}($ Kns-Mt $)$	50.490002

Design Results

Fy(Mpa)	415
Fc(Mpa)	30
As Reqd(mm²)	2041.000000
As $(\%)$	1.436000
Bar Size	12
Bar No	20

Fig 6.3a reinforcement details of a column

Output:

Due to very huge and detailed explanation of staad output for each and every coloumn we have shown a column design results below showing the amount of load,moments,amount of steel required, section adopted etc.

The main problem with staad is it takes all coloumns also as beams initially before design and continue the same.so here output of column 1 which os actually $131^{\text {st }}$ beam as most of beams are used in drawing the plan.

Out put for coloumn 1(beam 131):

```
            C O L U M N N O. 131 D E S I G N R E S U L T S
                M30
(Sec.)
    LENGTH: 3000.0 mm CROSS SECTION: 350.0 mm X 450.0 mm COVER:
40.0 mm
    ** GUIDING LOAD CASE: 9 END JOINT: 1 SHORT COLUMN
    DESIGN FORCES (KNS-MET)
    DESIGN AXIAL FORCE (Pu) : 76.8
\begin{tabular}{l|cr} 
INITIAL MOMENTS & \(: 75.89\) & 50.49
\end{tabular}
    SLENDERNESS RATIOS
    MOMENTS DUE TO SLENDERNESS EFFECT
    MOMENT REDUCTION FACTORS
    ADDITION MOMENTS (Maz and May)
    TOTAL DESIGN MOMENTS
REQD. STEEL AREA : 2041.15 Sq.mm.
REQD. CONCRETE AREA: 155458.86 Sq.mm.
MAIN REINFORCEMENT : Provide 20 - 12 dia. (1.44\%, 2261.95
(Equally distributed)
TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 mm c/c
SECTION CAPACITY BASED ON REINFORCEMENT REQUIRED (KNS-MET)
Puz : 2734.00 Muz1 : 144.59 Muy1 : 107.38
INTERACTION RATIO: 1.00 (as per Cl. 39.6, IS456:2000)
SECTION CAPACITY BASED ON REINFORCEMENT PROVIDED (KNS-MET)
WORST LOAD CASE: 9
END JOINT: 1 Puz : 2799.74 Muz : 157.05 Muy :
116.44 IR: 0.92
```

The following figure shows the deflection of same column.

STAAD.Pro Query Deflection Result
Beam no. 131
Deflection in Global X axis. Load case 1 .

Distmm	X (in)	Y (in)	Z (in)
0.000000	0.0000	0.0000	0.0000
249.999491	-0.0000	-0.0005	0.0001
499.998983	-0.0001	-0.0009	0.0002
749.998474	-0.0002	-0.0014	0.0005
999.997965	-0.0003	-0.0019	0.0008
1249.997457	-0.0004	-0.0023	0.0012
1499.996948	-0.0005	-0.0028	0.0017
1749.996440	-0.0005	-0.0033	0.0023
1999.995931	-0.0004	-0.0037	0.0030
2249.995422	-0.0002	-0.0042	0.0037
2499.994914	0.0000	-0.0047	0.0045
2749.994405	0.0005	-0.0051	0.0053
2999.993896	0.0010	-0.0056	0.0062

Fig 6.3 b deflection of column

Check for Column design :

Short axially Loaded columns:
Given data
$\mathrm{fck}=30 \mathrm{~N} / \mathrm{mm}^{2}$
fy $=415 \mathrm{~N} / \mathrm{mm}^{2}$
puz $=2734 \mathrm{~N}$
$\mathrm{b}=350 \mathrm{~d}=450$

Design of reinforcement Area:

(As per clause 39.6 of IS 456 2000)
Puz $=0.45 f_{\text {ck }} \mathrm{A}_{\mathrm{c}}+0.75 \mathrm{f}_{\mathrm{y}} \mathrm{A}_{\mathrm{sc}}$
$2734=0.45^{*} 30 *(350 * 450-\mathrm{Asc})+0.75 * 415 * \mathrm{~A}_{\mathrm{sc}}$
On solving the above equation we get
Asc=2041.15 Sq.mm.((Matched with Output)
Design of Main(Longitudinal) reinforcement:
(As per clause 26.5.3.1 of IS 456-2000)

1. The cross sectional area of longitudinal reinforcement shall not be less 0.8%, not more than 6% of the gross cross sectional area of the column.
2. The bars shall not be less than 12 mm in diameter.
3. Spacing of longitudinal bars measured along the periphery of the column shall not exceed 300 mm .

Provided main reinforcement : 20-12 dia

$$
(1.44 \%, \quad 2261.95 \text { Sq.mm. })
$$

Check for Transverse reinforcement:

(As per clause 26.5.3.2 of IS 456-2000)

A) pitch :

shall not be more than the least of the following

1) Least lateral dimension of the compression member (350 mm).
2) $16 x$ diameter of longitudinal reinforcement bar

$$
=16 \times 12=192 \mathrm{~mm}
$$

3) 300 mm

B) Diameter :

1) Shall not be less than one fourth of the diameter of main reinforcement.
2) Not less than 6 mm .

PROVIDED TIE REINFORCEMENT : Provide 8 mm dia. rectangular ties @ 190 $\mathrm{mm} \mathrm{c} / \mathrm{c}$

CHAPTER 7

 SLABS
7.1 Slab design:

Slab is plate elements forming floor and roofs of buildings carrying distributed loads primarily by flexure.

One way slab:

One way slab are those in which the length is more than twice the breadth it can be simply supported beam or continuous beam.

Two way slab:

When slabs are supported to four sides two ways spanning action occurs. Such as slab are simply supported on any or continuous or all sides the deflections and bending moments are considerably reduces as compared to those in one way slab.

Checks:

There is no need to check serviceability conditions, because design satisfying the span for depth ratio.
a.) Simply supported slab
b.) Continuous beam

Fig 7.1. a Diagrams of slab deflection in one way and two way slabs

Following figures shows the load distributions in two slabs.
a) One-way slab

b) Two-way slab

Fig 7.1.b A Diagram of load distribution of one way and two way slabs

Slabs are designed for deflection. Slabs are designed based on yield theory
This diagram shows the distribution of loads in two slabs.

Figure 7.1.c Distribution of loads in two slabs.
order to design a slab we has to create a plate by selecting a plate cursor. Now select the members to form slab and use form slab button. Now give the thickness of plate as 0.12 m . Now similar to the above designs give the parameters based on code and assign design slab command and select the plates and assign commands to it. After analysis is carried out go to advanced slab design page and collect the reinforcement details of the slab.

Slabs are also designed as per IS456-2000

The following figure shows the monolithic connection between beam, column and slab

Figure 7.1.d monolithic connection between beam, column and slab

Design of slabs :

Size: $3.88 \mathrm{~m} \times 3.53 \mathrm{~m}$
End conditions for slab:
Adjacent long and short sides are continuous and other edges discontinuous.
Assuming the thickness of slab as 120 mm .

Calculation of loads:

Live load:

For residential building live load is usually taken as $2 \mathrm{kN} / \mathrm{sq} . \mathrm{m}$. (in accordance with 875 part II)
Dead load :
Self weight of slab $\quad=1 \mathrm{x} 1 \times 0.12 \times 25=3.0 \mathrm{KN} / \mathrm{m}^{2}$
Weight of flooring $(75 \mathrm{~mm}$ thick $)=1 \times 1 \times 0.005 \times 20=1.0 \mathrm{KN} / \mathrm{m}^{2}$
Accidental loads $\quad=1.0 \mathrm{KN} / \mathrm{m}^{2} \quad=1.0 \mathrm{KN} / \mathrm{m}^{2}$
$5.0 \mathrm{KN} / \mathrm{m}^{2}$

Live load:

Live load is taken $\quad=2.0 \mathrm{KN} / \mathrm{m}^{2}$
Total load $\quad=2+5.0 \mathrm{KN} / \mathrm{m}^{2}$
Factored load $\quad=1.5 \times 7.0 \mathrm{KN} / \mathrm{m}^{2}$
Design load $\quad=10.5 \mathrm{KN} / \mathrm{m}^{2}$

Calculation of moments:

(As per Table 12 of IS 456-2000)

Bending moment coefficients for slab :

Dead load and super imposed load
Near the middle

End of span
At support next to
End support
Positive bending moment at mid span
Mu
$=\quad 10.5 \mathrm{x}(3.88)^{2} / 12$
$=\quad 13.17 \mathrm{KNm}$

Negative bending moment at support	$=$	$-10.5 \times(3.88)^{2} / 10$
	$=15.8 \mathrm{KNm}$	
Design bending moment	$=$	15.8 KNm

Calculation of effective depth:

Adopting M30 concrete and Fe 415 steel
As per IS 456-2000(Annexure G)
Mu, limit

Assuming b
Xumax/d $\quad=0.48$
Mulimit
$=4.13 \mathrm{bd}^{2}$
$=1000 \mathrm{~mm}$
$=$ Mulimit
$=\sqrt{ } 15.8 \times 10^{6} /(4.13 \times 1000)$
$=61.852 \mathrm{~mm}$
Adopting 8-mm dia bars as reinforcement
Effective cover
Over all depth
$=15+10 / 2=20 \mathrm{~mm}$
$=\mathrm{D}=61.852+20=81.852$

Therefore providing overall depth $\mathrm{D} \quad=120 \mathrm{~mm}$
Effective depth
d
$=120-20=100 \mathrm{~mm}$

Form IS 456-2000(Annexure G)
15.8

Ast

$$
\begin{aligned}
\mathrm{Mu} & =0.87 \mathrm{xf}_{\mathrm{y}} \mathrm{xAstxd}\left(1-\mathrm{f}_{\mathrm{y}} \mathrm{xAst} / \mathrm{bdf}\right. \\
& =0.87 \mathrm{x} 415 \times 100 \times \operatorname{stt}(1-415 \mathrm{xAst} /(1000 \times 100 \times 30) \\
& =437.6 \mathrm{~mm}^{2}
\end{aligned}
$$

Providing minimum steel of $=0.12 \% x b x D=144 \mathrm{~mm}^{2}$
Spacing of 10 mm dia bars $=($ astx 1000$) /$ Ast
$=\left(\prod \times 10^{2} \times 1000\right) /(4 \times 437.6)$
$=179.47 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
As per IS 456 2000, clause 26.3.3b,the spacing of Reinforcement should be not more than least of following

1. 3 xeffective depth $\quad=3 \times 100 \quad=300 \mathrm{~mm}$
2. 300 mm

Provide $10 \mathrm{~mm} \Phi$ bars @ 175 mm .

Distribution reinforcement:

As per IS 456-2000(clause:26.5.2.1)
Providing 0.12\% of gross area as distribution reinforcement
Area of steel $\quad=(0.12 \times 120 \times 1000) / 100=144 \mathrm{~mm}^{2}$

Adopting $6 \mathrm{~mm} \Phi$ bars as distribution reinforcement

$$
\begin{aligned}
\text { Spacing } \quad & =(\text { astx } 1000) / \text { Ast } \\
& =\left(\prod / 4 \times 6^{2} \times 1000\right) / 144 \\
& =196.35 \mathrm{~mm} \mathrm{c} / \mathrm{c}
\end{aligned}
$$

Provide $6 \mathrm{~mm} \Phi$ bars @ 180mm c/c

Check for development length:

As per IS 456-2000(clause 26.2.1)
The development length Ld is given by

$$
\begin{array}{ll}
\quad \mathrm{Ld} & =\Phi \sigma_{\mathrm{st}} / 4 \mathrm{t}_{\mathrm{bd}} \\
& =(10 \times 0.87 \times 415) /(4 \times 1.2 \times 1.6) \\
& =470.11 \mathrm{~mm} \text { (req.) } \\
\text { Ld(available) } & =\mathrm{MI} / \mathrm{V}+\mathrm{L}_{0} \\
\text { M1 } & =0.87 \times \mathrm{xf}_{\mathrm{y}} \times \text { Astxd }\left(1-\mathrm{f}_{\mathrm{y}} \times \mathrm{Ast} / \mathrm{bdf} \mathrm{ck}_{\mathrm{ck}}\right) \\
& =0.87 \times 415 \times 437 \times 100(1-437 \times 415 /(1000 \times 100 \times 30) \\
& =14.82 \times 10^{6} \mathrm{~N}-\mathrm{mm}
\end{array}
$$

$$
\operatorname{Ld}(\text { available }) \quad=\mathrm{MI} / \mathrm{V}+\mathrm{L}_{0}
$$

Shear force at the section due to design loads

$$
\begin{aligned}
\mathrm{V} & =\mathrm{W} 1 / 2=10.5 \times 3.88 / 2 \\
& =20.37 \\
\mathrm{M} 1 / \mathrm{V}+\mathrm{L}_{0} & =14.82 / 20.37+\mathrm{L}_{0} \\
& =0.727 \mathrm{~m}+\mathrm{L}_{0} \\
& =727 \mathrm{~mm}+\mathrm{L}_{0}
\end{aligned}
$$

$\operatorname{Ld}($ available) $>\operatorname{Ld}($ req'd) safe

CHAPTER 8

 FOOTINGSFoundations are structural elements that transfer loads from the building or individual column to the earth .If these loads are to be properly transmitted, foundations must be designed to prevent excessive settlement or rotation, to minimize differential settlement and to provide adequate safety against sliding and overturning.

GENERAL:

1.) Footing shall be designed to sustain the applied loads, moments and forces and the induced reactions and to assure that any settlements which may occur will be as nearly uniform as possible and the safe bearing capacity of soil is not exceeded.
2.) Thickness at the edge of the footing: in reinforced and plain concrete footing at the edge shall be not less than 150 mm for footing on the soil nor less than 300 mm above the tops of the pile for footing on piles.

BEARING CAPACITY OF SOIL:

The size foundation depends on permissible bearing capacity of soil. The total load per unit area under the footing must be less than the permissible bearing capacity of soil to the excessive settlements.

8.1 Foundation design:

Foundations are structure elements that transfer loads from building or individual column to earth this loads are to be properly transmitted foundations must be designed to prevent excessive settlement are rotation to minimize differential settlements and to provide adequate safety isolated footings for multi storey buildings. These may be square rectangle are circular in plan that the choice of type of foundation to be used in a given situation depends on a number of factors.
1.) Bearing capacity of soil
2.) Type of structure
3.) Type of loads
4.) Permissible differential settlements
5.) economy

A footing is the bottom most part of the structure and last member to transfer the load. In order to design footings we used staad foundation software.

These are the types of foundations the software can deal.
Shallow ($\mathrm{D}<\mathrm{B}$)

- 1. Isolated (Spread) Footing
- 2.Combined (Strip) Footing
- 3.Mat (Raft) Foundation

Deep ($\mathrm{D}>\mathrm{B}$)

- 1.Pile Cap
- 2. Driller Pier

The advantage of this software is even after the analysis of staad we can update the following properities if required.

The following Parameters can be updated:

- Column Position
- Column Shape
- Column Size
- Load Cases
- Support List

After the analysis of structure at first we has to import the reactions of the columns from staad pro using import button.

After we import the loads the placement of columns is indicated in the figure.

Fig 8.1a placement of columns

After importing the reactions in the staad foundation the following input data is required regarding materials, Soil type, Type of foundation, safety factors.

- Type of foundation: ISOLATED.
- Unit weight of concrete: $25 \mathrm{kn} / \mathrm{m}^{\wedge} 3$
- Minimum bar spacing:50mm
- Maximum bar spacing:500mm
- Strength of concrete: $30 \mathrm{~N} / \mathrm{mm}^{\wedge} 2$
- Yield strength of steel:415 n/mm^2
- Minimum bar size:6mm
- Maximum bar size:40mm
- Bottom clear cover:50mm
- Unit weight of soil: $22 \mathrm{kn} / \mathrm{m}^{\wedge} 3$
- Soil bearing capacity:300 kn/m^3
- Minimumlength: 1000 mm
- Minimum width:1000mm
- Minimum thichness:500mm
- Maximum length:12000mm
- Maximum width: 12000 mm
- Maximum thickness: 1500 mm
- Plan dimension:50mm
- Aspect ratio: 1
- Safety against friction,overturning,sliding:0.5,1.5,1.5

After this input various properties of the structure and click on design.
After the analysis detailed calculation of each and every footing is given with plan and elevation of footing including the manual calculation.

The following tables show the dimensions and reinforcement details of all the footings.

Footing No.	Group ID	Foundation Geometry		
-	-	Length	Width	Thickness
1	1	3.800 m	3.800 m	0.502 m
2	2	4.750 m	4.750 m	0.553 m
3	3	3.200 m	3.200 m	0.702 m
4	4	3.350 m	3.350 m	0.752 m
6	5	2.650 m	2.650 m	0.551 m
9	6	2.900 m	2.900 m	0.501 m

10	7	3.500 m	3.500 m	0.802 m
11	8	2.900 m	2.900 m	0.601 m
12	9	3.250 m	3.250 m	0.501 m
13	10	2.450 m	2.450 m	0.501 m
14	11	2.950 m	2.950 m	0.652 m
15	12	2.650 m	2.650 m	0.551 m
16	13	3.650 m	3.650 m	0.852 m
17	14	2.600 m	2.600 m	0.551 m
18	15	3.050 m	3.050 m	0.702 m
19	16	4.100 m	4.100 m	0.502 m
20	17	3.750 m	3.750 m	0.652 m
21	18	3.500 m	3.500 m	0.652 m
22	19	3.350 m	3.350 m	0.752 m
23	20	3.200 m	3.200 m	0.501 m
24	21	2.650 m	2.650 m	0.501 m
25	22	3.500 m	3.500 m	0.802 m
26	23	2.650 m	2.650 m	0.501 m
27	24	2.850 m	2.850 m	0.651 m
28	25	2.250 m	2.250 m	0.501 m
29	26	2.550 m	2.550 m	0.551 m
30	27	2.550 m	2.550 m	0.551 m
31	28	3.300 m	3.300 m	0.752 m
32	29	4.150 m	4.150 m	0.952 m
35	30	2.800 m	2.800 m	0.602 m
36	31	2.100 m	2.100 m	0.501 m
37	32	2.350 m	2.350 m	0.501 m
38	33	2.300 m	2.300 m	0.551 m
39	34	2.500 m	2.500 m	0.551 m
40	35	3.100 m	3.100 m	0.652 m
41	36	2.300 m	2.300 m	0.551 m
42	37	3.600 m	3.600 m	0.852 m
44	38	3.150 m	3.150 m	0.702 m
45	39	3.150 m	3.150 m	0.501 m
46	40	2.350 m	2.350 m	0.501 m
47	41	2.850 m	2.850 m	0.651 m
50	42	2.100 m	2.100 m	0.501 m
51	43	3.200 m	3.200 m	0.702 m
52	44	2.850 m	2.850 m	0.651 m
53	45	2.400 m	2.400 m	0.551 m
54	46	2.600 m	2.600 m	0.601 m
55	47	2.150 m	2.150 m	0.501 m

1	\#10@ $65 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#10@ $65 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8 @ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8 @ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
2	\#12@ $70 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#12@ $70 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
3	\#10@ $70 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#10@ $70 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@80 mm c/c	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
4	\#10@ $60 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#10@ $60 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
6	\#8@ $65 \mathrm{~mm} \mathrm{c/c}$	\#8@ $50 \mathrm{~mm} \mathrm{c/c}$	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
9	\#8@ $60 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@ $55 \mathrm{~mm} \mathrm{c/c}$	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
10	\#10@ $65 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#10@ $55 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@80 mm c/c	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
11	\#8 @ $50 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $50 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@ $80 \mathrm{~mm} \mathrm{c/c}$
12	\#8 @ $80 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $80 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
13	\#8 @ $65 \mathrm{~mm} \mathrm{c/c}$	\#8 @ 65 mm c/c	\#8@80 mm c/c	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
14	\#10@ $75 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#10@ $70 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@80 mm c/c	\#8@80 mm c/c
15	\#8 @ $65 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $50 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@80 mm c/c
16	\#10@ $65 \mathrm{~mm} \mathrm{c/c}$	\#10@ $50 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@80 mm c/c	\#8@80 mm c/c
17	\#8 @ $65 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $55 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@80 mm c/c
18	\#8 @ $50 \mathrm{~mm} \mathrm{c/c}$	\#10@ $70 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8 @ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8 @ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
19	\#10@ $70 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#10@ $65 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@80 mm c/c	\#8@80 mm c/c
20	\#10@ $60 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#10@ $65 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
21	\#10@ $65 \mathrm{~mm} \mathrm{c/c}$	\#10@ $65 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@80 mm c/c	\#8@80 mm c/c
22	\#10@ $60 \mathrm{~mm} \mathrm{c/c}$	\#10@ $60 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@80 mm c/c	\#8@ $80 \mathrm{~mm} \mathrm{c/c}$
23	\#8 @ $55 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $55 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@80 mm c/c
24	\#8 @ $55 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $55 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
25	\#10@ $65 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#10@ $55 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8 @ $80 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
26	\#8 @ $55 \mathrm{~mm} \mathrm{c/c}$	\#8 @ 55 mm c/c	\#8@80 mm c/c	\#8@ $80 \mathrm{~mm} \mathrm{c/c}$
27	\#8 @ $50 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $50 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@80 mm c/c
28	\#8 @ $80 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $80 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@80 mm c/c
29	\#8 @ $55 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $55 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@80 mm c/c
30	\#8 @ $55 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $55 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@80 mm c/c
31	\#10@ $65 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#10@ $60 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8 @ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8 @ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
32	\#10@ $50 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#10@ $50 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8 @ $80 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
35	\#10@ $75 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#10@ $75 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
36	\#8@ $75 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $70 \mathrm{~mm} \mathrm{c/c}$	\#8@ $75 \mathrm{~mm} \mathrm{c/c}$	\#8@ $75 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
37	\#8 @ $55 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $55 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@80 mm c/c
38	\#8 @ $70 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $60 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@ $80 \mathrm{~mm} \mathrm{c/c}$
39	\#8 @ $55 \mathrm{~mm} \mathrm{c/c}$	\#8@ $50 \mathrm{~mm} \mathrm{c/c}$	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
40	\#10@ $70 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#10@ $70 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@80 mm c/c	\#8 @ $80 \mathrm{~mm} \mathrm{c/c}$
41	\#8 @ $70 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $60 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
42	\#10@ $65 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#10@ $55 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@80 mm c/c	\#8 @ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
44	\#10@ 65 mm c/c	\#10@ $70 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@80 mm c/c	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
45	\#8 @ $70 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $65 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@80 mm c/c	\#8@80 mm c/c
46	\#8 @ $60 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $60 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@80 mm c/c
47	\#8@ $50 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $50 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@80 mm c/c

50	\#8 @ $75 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $70 \mathrm{~mm} \mathrm{c/c}$	\#8@ $75 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@ $75 \mathrm{~mm} \mathrm{c/c}$
51	\#10@ $65 \mathrm{~mm} \mathrm{c/c}$	\#10@ $65 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@80 mm c/c	\#8@80 mm c/c
52	\#8 @ $50 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $50 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@80 mm c/c
53	\#8@ 65 mm c/c	\#8 @ $65 \mathrm{~mm} \mathrm{c/c}$	\#8@ $80 \mathrm{~mm} \mathrm{c/c}$	\#8@ $80 \mathrm{~mm} \mathrm{c/c}$
54	\#8 @ $55 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $55 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@80 mm c/c
55	\#8 @ $75 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $70 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@80 mm c/c
58	\#8 @ $55 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $55 \mathrm{~mm} \mathrm{c/c}$	\#8@ $80 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c
59	\#8 @ $80 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $80 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
61	\#8 @ $80 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $80 \mathrm{~mm} \mathrm{c/c}$	\#8@ $80 \mathrm{~mm} \mathrm{c/c}$	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
62	\#10@ $75 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#10@ 60 mm c/c	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
63	\#10@ $70 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#10@ 65 mm c/c	\#8@80 mm c/c	\#8@ $80 \mathrm{~mm} \mathrm{c/c}$
64	\#8 @ $80 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $80 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@ $80 \mathrm{~mm} \mathrm{c/c}$
65	\#10@ $75 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#10@ $75 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@80 mm c/c	\#8@80 mm c/c
66	\#8 @ $80 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $75 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@80 mm c/c
67	\#8@ $65 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $65 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@80 mm c/c
68	\#8@ $55 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $55 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@80 mm c/c
69	\#8 @ $55 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $55 \mathrm{~mm} \mathrm{c/c}$	\#8@ $80 \mathrm{~mm} \mathrm{c/c}$	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
70	\#8 @ $50 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $50 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@80 mm c/c
71	\#10@ $75 \mathrm{~mm} \mathrm{c/c}$	\#10@ $75 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@80 mm c/c	\#8@80 mm c/c
72	\#8 @ $50 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $50 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@80 mm c/c
73	\#8@ $55 \mathrm{~mm} \mathrm{c/c}$	\#8@ $55 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
74	\#8@ $55 \mathrm{~mm} \mathrm{c/c}$	\#8@ $55 \mathrm{~mm} \mathrm{c/c}$	\#8@ $80 \mathrm{~mm} \mathrm{c/c}$	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
77	\#8@ $60 \mathrm{~mm} \mathrm{c/c}$	\#8@ $60 \mathrm{~mm} \mathrm{c/c}$	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
78	\#8 @ $70 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $65 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@80 mm c/c
79	\#8@ $55 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $50 \mathrm{~mm} \mathrm{c/c}$	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
80	\#8@ $65 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $60 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@80 mm c/c
81	\#8@ $65 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $60 \mathrm{~mm} \mathrm{c/c}$	\#8@ $80 \mathrm{~mm} \mathrm{c/c}$	\#8@ $80 \mathrm{~mm} \mathrm{c/c}$
82	\#8 @ $50 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#10@ $75 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8 @ $80 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c
83	\#8 @ $80 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $80 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@80 mm c/c
84	\#8@80 mm c/c	\#8 @ $80 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
85	\#8 @ $55 \mathrm{~mm} \mathrm{c/c}$	\#10@ $70 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@80 mm c/c	\#8@80 mm c/c
86	\#10@ $55 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#10@ $55 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@80 mm c/c	\#8@80 mm c/c
87	\#10@ $65 \mathrm{~mm} \mathrm{c/c}$	\#10@ $70 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@80 mm c/c	\#8@80 mm c/c
88	\#8@ $80 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $75 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@ $80 \mathrm{~mm} \mathrm{c/c}$	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
89	\#10@ $75 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#10@ $75 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8 @ $80 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c
90	\#8@ $60 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $60 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@80 mm c/c	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
91	\#10@ $65 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#10@ $65 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8 @ $80 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c
92	\#10@ $60 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#10@ 65 mm c/c	\#8@ $80 \mathrm{~mm} \mathrm{c/c}$	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
93	\#8 @ $60 \mathrm{~mm} \mathrm{c/c}$	\#8 @ $60 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@80 mm c/c
94	\#8@ $70 \mathrm{~mm} \mathrm{c/c}$	\#8@ $65 \mathrm{~mm} \mathrm{c/c}$	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8@ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
95	\#10@ $60 \mathrm{~mm} \mathrm{c/c}$	\#10@ $55 \mathrm{~mm} \mathrm{c/c}$	\#8@80 mm c/c	\#8@80 mm c/c

96	$\# 10 @ 65 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\# 10 @ 60 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\# 8 @ 80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	\#8 @ $80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
97	$\# 10 @ 65 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\# 10 @ 60 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\# 8 @ 80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\# 8 @ 80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$
99	$\# 10 @ 65 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\# 10 @ 60 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\# 8 @ 80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$	$\# 8 @ 80 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

After the design is complete the calculations is obtained for each and every column and a sample column calculations is shown below.

Isolated Footing 1

elevation

PLAN
Fig 8.1.a Elevation and Plan of Isolated Footing

Footing Geometry

Footing Thickness (Ft) : 500.00 mm
Footing Length $-\mathrm{X}(\mathrm{Fl}): 1000.00 \mathrm{~mm}$
Footing Width -Z (Fw) : 1000.00 mm

Column Dimensions

Column Shape :	Rectangular
Column Length $-\mathbf{X}$ (Pl) :	0.45 m
Column Width $-\mathbf{Z}$ $($ Pw) $:$	0.35 m

Pedestal
Pedestal Length - X : N/A
Pedestal Width -Z : N/A

Design Parameters

Concrete and Rebar Properties

Unit Weight of Concrete : $25.000 \mathrm{kN} / \mathrm{m} 3$
Strength of Concrete : $30.000 \mathrm{~N} / \mathrm{mm} 2$
Yield Strength of Steel : $415.000 \mathrm{~N} / \mathrm{mm} 2$
Minimum Bar Size : \# 6
Maximum Bar Size : \# 40
Minimum Bar Spacing : 50.00 mm

Maximum Bar Spacing : 500.00 mm
Footing Clear Cover (F, CL) : 50.00 mm

Soil Properties :

Soil Type : Un Drained
Unit Weight : $22.00 \mathrm{kN} / \mathrm{m} 3$
Soil Bearing Capacity : $300.00 \mathrm{kN} / \mathrm{m} 2$
Soil Surcharge : $0.00 \mathrm{kN} / \mathrm{m} 2$
Depth of Soil above Footing : 0.00 mm
Untrained Shear Strength : $0.00 \mathrm{~N} / \mathrm{mm} 2$

Sliding and Overturning :

Coefficient of Friction : 0.50
Factor of Safety Against Sliding : 1.50
Factor of Safety Against Overturning : 1.50

Applied Loads - Allowable Stress Level					
LC	Axial (kN)	Shear X (kN)	Shear Z (kN)	$\begin{gathered} \text { Moment X } \\ (\mathrm{kNm}) \\ \hline \end{gathered}$	Moment Z (kNm)
1	168.123	-1.837	0.275	1.491	1.441
2	140.638	-3.797	-0.289	0.593	3.370
3	842.201	-16.764	-1.784	2.831	14.560
4	-116.948	20.364	19.053	32.167	-52.030
5	1726.443	-33.597	-2.696	7.373	29.057
6	1240.817	-2.441	20.708	44.499	-39.191
7	1521.493	-51.314	-25.020	-32.702	85.682
8	1381.155	-26.878	-2.156	5.898	23.245
9	76.762	27.790	28.993	50.487	-75.884
10	427.606	-33.301	-28.168	-46.014	80.207
11	252.184	-2.755	0.413	2.237	2.162
12	151.310	-1.653	0.248	1.342	1.297
Applied Loads - Strength Level					
LC	$\begin{gathered} \text { Axial } \\ (\mathrm{kN}) \\ \hline \end{gathered}$	Shear X (kN)	Shear Z (kN)	Moment X (kNm)	Moment Z (kNm)
1	168.123	-1.837	0.275	1.491	1.441
2	140.638	-3.797	-0.289	0.593	3.370
3	842.201	-16.764	-1.784	2.831	14.560

4	-116.948	20.364	19.053	32.167	-52.030
5	1726.443	-33.597	-2.696	7.373	29.057
6	1240.817	-2.441	20.708	44.499	-39.191
7	1521.493	-51.314	-25.020	-32.702	85.682
8	1381.155	-26.878	-2.156	5.898	23.245
9	76.762	27.790	28.993	50.487	-75.884
10	427.606	-33.301	-28.168	-46.014	80.207
11	252.184	-2.755	0.413	2.237	2.162
12	151.310	-1.653	0.248	1.342	1.297

Design Calculations :

Footing Size

$$
\begin{aligned}
\text { Initial Length }\left(\mathrm{L}_{\mathrm{o}}\right) & =1.00 \mathrm{~m} \\
\text { Initial Width }\left(\mathrm{W}_{\mathrm{o}}\right) & =1.00 \mathrm{~m} \\
\text { Uplift force due to buoyancy } & =-0.00 \mathrm{kN} \\
\text { Effect due to adhesion } & =0.00 \mathrm{kN}
\end{aligned}
$$

Min. footing area required from
bearing pressure, $\mathrm{A}_{\min }=\mathrm{P} / \mathrm{q}_{\max }=5.796 \mathrm{~m}^{2}$
Footing area from initial length and

$$
\begin{aligned}
& \text { al length and } L_{0} \times W_{o}=1.00 \mathrm{~m}^{2} \\
& \text { width, } \mathrm{A}_{\mathrm{o}}=
\end{aligned}
$$

Final Footing Size

| Length $\left(\mathrm{L}_{2}\right)=$ | 3.80 | M | Governing Load Case : |
| :--- | :--- | :--- | :--- | \#4

Pressures at Four Corner

Load Case	Pressure at corner 1 ($\left.\mathbf{q}_{1}\right)$ $\left(\mathbf{k N} / \mathbf{m}^{\wedge}\right)$	Pressure at corner 2 ($\left.\mathbf{q}_{\mathbf{2}}\right)$ $\left(\mathbf{k N} / \mathbf{m}^{\wedge}\right)$	Pressure at corner 3 ($\left.\mathbf{q}_{3}\right)$ $\left(\mathbf{k N} / \mathbf{m}^{2}\right)$	Pressure at corner 4 ($\left.\mathbf{q}_{4}\right)$ $\left(\mathbf{k N} / \mathbf{m}^{\wedge}\right)$	Area of footing in uplift ($\left.\mathbf{A}_{\mathbf{u}}\right)$ $\left(\mathbf{m}^{2}\right)$
5	$\mathbf{1 3 6 . 4 1 5 1}$	126.3869	127.7045	137.7327	0.00
5	136.4151	$\mathbf{1 2 6 . 3 8 6 9}$	127.7045	137.7327	0.00
5	136.4151	126.3869	$\mathbf{1 2 7 . 7 0 4 5}$	137.7327	0.00
5	136.4151	126.3869	127.7045	$\mathbf{1 3 7 . 7 3 2 7}$	0.00

If A_{u} is zero, there is no uplift and no pressure adjustment is necessary. Otherwise, to account for uplift, areas of negative pressure will be set to zero and the pressure will be redistributed to remaining corners.

Summary of adjusted Pressures at Four Corner

Load Case	Pressure at corner 1 ($\left.\mathbf{q}_{\mathbf{1}}\right)$ $\left(\mathbf{k N} / \mathbf{m}^{\wedge} \mathbf{2}\right)$	Pressure at corner 2 $\left(\mathbf{q}_{\mathbf{2}}\right)$ $\left(\mathbf{k N} / \mathbf{m}^{\wedge} \mathbf{2}\right)$	Pressure at corner 3 $\left(\mathbf{q}_{\mathbf{3}}\right)$ $\left(\mathbf{k N} / \mathbf{m}^{\wedge} \mathbf{2}\right)$	Pressure at corner 4 ($\left.\mathbf{q}_{4}\right)$ $\left(\mathbf{k N} / \mathbf{m}^{\wedge} \mathbf{2}\right)$
5	$\mathbf{1 3 6 . 4 1 5 1}$	126.3869	127.7045	137.7327
5	136.4151	$\mathbf{1 2 6 . 3 8 6 9}$	127.7045	137.7327
5	136.4151	126.3869	$\mathbf{1 2 7 . 7 0 4 5}$	137.7327
5	136.4151	126.3869	127.7045	$\mathbf{1 3 7 . 7 3 2 7}$

Adjust footing size if necessary.

Details of Out-of-Contact Area (If Any)

$$
\begin{aligned}
\text { Governing load case } & =\mathrm{N} / \mathrm{A} \\
\text { Plan area of footing } & =14.44 \mathrm{sq} \cdot \mathrm{~m} \\
\text { Area not in contact with soil } & =0.00 \mathrm{sq} \cdot \mathrm{~m} \\
\% \text { of total area not in contact } & =0.00 \%
\end{aligned}
$$

Check For Stability Against Overturning And Sliding

-	Factor of safety against sliding		Factor of safety against overturning	
Load Case No.	Along X- Direction	Along Z- Direction	About X- Direction	About Z- Direction
1	94.894	633.851	406.729	280.722
2	42.284	556.554	1358.999	115.812
3	30.503	286.709	1001.994	84.696
4	1.560	1.668	2.896	1.941
5	28.379	353.724	601.339	79.013
6	291.089	34.319	49.231	71.120
7	16.584	34.012	71.523	29.044
8	29.051	362.094	615.569	80.883
9	4.629	4.437	7.522	5.444
10	9.130	10.794	19.225	11.929
11	78.517	524.459	336.534	232.274
12	100.353	670.316	430.128	296.871

Critical Load Case And The Governing Factor Of Safety For Overturning and Sliding X Direction

Critical Load Case for Sliding along X-Direction : 4
Governing Disturbing Force : 20.364 kN

Governing Restoring Force : 31.776 kN
Minimum Sliding Ratio for the Critical Load Case : 1.560
Critical Load Case for Overturning about X-Direction : 4
Governing Overturning Moment : 41.693 kNm
Governing Resisting Moment : 120.746 kNm
Minimum Overturning Ratio for the Critical Load Case 2.896

Critical Load Case And The Governing Factor Of Safety For Overturning and Sliding Z Direction

Critical Load Case for Sliding along Z-Direction : 4
Governing Disturbing Force : 19.053 kN
Governing Restoring Force : 31.776 kN
Minimum Sliding Ratio for the Critical Load Case : 1.668
Critical Load Case for Overturning about Z-Direction : 4
Governing Overturning Moment : -62.212 kNm
Governing Resisting Moment : 120.746 kNm
Minimum Overturning Ratio for the Critical Load Case : 1.941

Moment Calculation :

Check Trial Depth against moment (w.r.t. X Axis)
Critical Load Case $=\# 5$
Effective Depth $=\mathrm{D}-\left(\mathrm{cc}+0.5 \times \mathrm{d}_{\mathrm{b}}\right)=0.45 \mathrm{~m}$
Governing moment $\left(\mathrm{M}_{\mathrm{u}}\right)=678.540753 \mathrm{kNm}$
As Per IS 4562000 ANNEX G G-1.1C
Limiting Factor $1\left(\mathrm{~K}_{\mathrm{umax}}\right)=\frac{700}{\left(1100+0.87 \times \mathrm{f}_{\mathrm{y}}\right)}=0.479107$

$$
\begin{gathered}
\text { Limiting Factor2 }\left(\mathrm{R}_{\text {umax }}\right)= \\
\mathrm{f}_{\mathrm{ck}} \times \mathrm{k}_{\text {umax }} \times(1-0.42 \times \text { kuthax })
\end{gathered}=4133.149375 \mathrm{kN} / \mathrm{m}^{\wedge} 2
$$

Limit Moment Of Resistance $\left(\mathrm{M}_{\mathrm{umax}}\right)=\mathrm{R}_{\mathrm{u} \mathbf{u m a x}} \times \mathrm{B} \times \mathrm{a}_{\mathrm{e}}^{2}=3138.136379 \mathrm{kNm}$

$$
\mathrm{M}_{\mathrm{u}}<=\mathrm{M}_{\mathrm{umax}} \text { hence, safe }
$$

Check Trial Depth against moment (w.r.t. Z Axis)

Critical Load Case $=\# 5$

$$
\begin{aligned}
\text { Effective Depth }=\mathrm{D}-\left(\mathrm{cc}+0.5 \times \mathrm{d}_{\mathrm{b}}\right) & =0.45 \mathrm{~m} \\
\text { Governing moment }\left(\mathrm{M}_{\mathrm{u}}\right) & =656.192207 \mathrm{kNm}
\end{aligned}
$$

As Per IS 4562000 ANNEX G G-1.1C

$$
\begin{aligned}
& \text { Limiting Factor }\left(\mathrm{K}_{\mathrm{umax}}\right)=\frac{700}{\left(1100+0.87 \times \mathrm{f}_{\mathrm{y}}\right)}=0.479107 \\
& \text { Limiting Factor } 2\left(\mathrm{R}_{\text {umax }}\right)==4133.149375 \mathrm{kN} / \mathrm{m}^{\wedge} 2
\end{aligned}
$$

Limit Moment Of Resistance $\left(\mathrm{M}_{\mathrm{umax}}\right)=\mathrm{F}_{\mathrm{qumax}} \times \mathrm{E} \times \mathrm{G}_{\mathrm{e}}^{2}=3138.136379 \mathrm{kNm}$

$$
\mathrm{M}_{\mathrm{u}}<=\mathrm{M}_{\mathrm{umax}} \text { hence, safe }
$$

Shear Calculation

Check Trial Depth for one way shear (Along X Axis)
Critical Load Case $=\# 5$
Shear Force(S) $=582.75 \mathrm{kN}$
Shear Stress $\left(\mathrm{T}_{\mathrm{v}}\right)=343.078914 \mathrm{kN} / \mathrm{m}^{\wedge} 2$
Percentage Of Steel $\left(\mathrm{P}_{\mathrm{t}}\right)=0.2566$
As Per IS 4562000 Clause 40 Table 19
Shear Strength Of Concrete $\left(\mathrm{T}_{\mathrm{c}}\right)=1005.98 \mathrm{kN} / \mathrm{m}^{\wedge} 2$

$$
\mathrm{T}_{\mathrm{v}}<\mathrm{T}_{\mathrm{c}} \text { hence, safe }
$$

Check Trial Depth for one way shear (Along Z Axis)
Critical Load Case $=\# 5$

$$
\begin{aligned}
& \text { Shear Force }(\mathrm{S})=573.75 \mathrm{kN} \\
& \text { Shear Stress }\left(\mathrm{T}_{\mathrm{v}}\right)=337.778591 \mathrm{kN} / \mathrm{m}^{\wedge} 2 \\
& \text { Percentage Of Steel }\left(\mathrm{P}_{\mathrm{t}}\right)=0.2479 \\
& \text { As Per IS 456 2000 Clause } 40 \text { Table } 19 \\
& \text { Shear Strength Of Concrete }\left(\mathrm{T}_{\mathrm{c}}\right)=1005.98 \mathrm{kN} / \mathrm{m}^{\wedge} 2
\end{aligned}
$$

$$
\mathrm{T}_{\mathrm{v}}<\mathrm{T}_{\mathrm{c}} \text { hence, safe }
$$

Check Trial Depth for two way shear
Critical Load Case $=\# 5$
Shear Force $(S)=1640.97 \mathrm{kN}$
Shear $\operatorname{Stress}\left(\mathrm{T}_{\mathrm{v}}\right)=1083.55 \mathrm{kN} / \mathrm{m}^{\wedge} 2$
As Per IS 4562000 Clause 31.6.3.1

$$
\mathrm{K}_{\mathrm{s}}=\operatorname{tririr}[0.5+\beta, 1]=1.00
$$

Shear Strength $\left(T_{c}\right)=0.25 \times \sqrt{\mathrm{F}_{\mathrm{cl}}}=1369.3064 \mathrm{kN} / \mathrm{m}^{\wedge} 2$

$$
\mathrm{K}_{\mathrm{s}} \times \mathrm{T}_{\mathrm{c}}=1369.3064 \mathrm{kN} / \mathrm{m}^{\wedge} 2
$$

$$
\mathrm{T}_{\mathrm{v}}<=\mathrm{K}_{\mathrm{s}} \times \mathrm{T}_{\mathrm{c}} \text { hence, safe }
$$

Reinforcement Calculation

Calculation of Maximum Bar Size

Along X Axis
Bar diameter corresponding to max bar size $\left(\mathrm{d}_{\mathrm{b}}\right)=25.000 \mathrm{~mm}$
As Per IS 4562000 Clause 26.2.1

$$
\begin{aligned}
& \text { Development Length }\left(l_{d}\right)=\frac{\mathrm{d}_{\mathrm{b}} \times 0.87 \times \mathrm{f}_{\mathrm{Y}}}{4 \times \Gamma_{\mathrm{bd}}}=1.47 \mathrm{~m} \\
& \text { Allowable Length }\left(1_{\mathrm{db}}\right)=\left[\frac{(\mathrm{B}-\mathrm{b})}{2}-\mathrm{cc}\right]= \\
& 1.63 \mathrm{~m} \\
& \quad 1_{d \mathrm{~b}}>l_{\mathrm{d}} \text { hence, safe }
\end{aligned}
$$

Along Z Axis

Bar diameter corresponding to max bar size $\left(\mathrm{d}_{\mathrm{b}}\right)=25.000 \mathrm{~mm}$
As Per IS 4562000 Clause 26.2.1

$$
\begin{aligned}
& \text { Development Length }\left(l_{d}\right)=\frac{\mathrm{d}_{\mathrm{b}} \times 0.87 \times \mathrm{f}_{\mathrm{y}}}{4 \times \Gamma_{\mathrm{bd}}}=1.47 \mathrm{~m} \\
& \text { Allowable Length }\left(1_{\mathrm{db}}\right)=\left[\frac{(\mathrm{H}-\mathrm{h})}{2}-\mathrm{cc}\right]_{=} \\
& 1.68 \mathrm{~m} \\
& \quad 1_{\mathrm{db}}>1_{\mathrm{d}} \text { hence, safe }
\end{aligned}
$$

Bottom Reinforcement Design

For moment w.r.t. X Axis $\left(\mathrm{M}_{\mathrm{x}}\right)$
As Per IS 4562000 Clause 26.5.2.1
Critical Load Case $=\# 5$
Minimum Area of Steel $\left(\mathrm{A}_{\text {stmin }}\right)=2289.12 \mathrm{~mm} 2$
Calculated Area of Steel $\left(\mathrm{A}_{\mathrm{st}}\right)=4359.21 \mathrm{~mm} 2$

$$
\begin{aligned}
& \text { Provided Area of Steel }\left(\mathrm{A}_{\mathrm{st}, \text { Provided }}\right)=4359.205 \mathrm{~mm} 2 \\
& \qquad \mathrm{~A}_{\mathrm{stmin}}<=\mathrm{A}_{\mathrm{st}, \text { Provided }} \text { Steel area is accepted }
\end{aligned}
$$

$$
\begin{gathered}
\text { Selected bar Dia }=10.000 \\
\text { Minimum spacing allowed }\left(\mathrm{S}_{\mathrm{min}}\right)=50.000 \mathrm{~mm} \\
\text { Selected spacing }(\mathrm{S})=67.091 \mathrm{~mm} \\
\mathrm{~S}_{\min }<=\mathrm{S}<=\mathrm{S}_{\mathrm{max}} \text { and selected bar size }<\text { selected maximum bar size... }
\end{gathered}
$$

The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

\#10@ 65.000 mm o.c.

For moment w.r.t. Z Axis $\left(\mathrm{M}_{\mathrm{z}}\right)$
As Per IS 4562000 Clause 26.5.2.1
Critical Load Case = \#5
Minimum Area of Steel $\left(\mathrm{A}_{\text {stmin }}\right)=2289.12 \mathrm{~mm} 2$

Calculated Area of Steel $\left(\mathrm{A}_{\mathrm{st}}\right)=4210.337 \mathrm{~mm} 2$
Provided Area of Steel $\left(\mathrm{A}_{\text {st,Provided }}\right)=4210.337 \mathrm{~mm} 2$
$\mathrm{A}_{\text {stmin }}<=\mathrm{A}_{\text {st,Provided }}$ Steel area is accepted

Selected bar Dia $=10.000$
Minimum spacing allowed $\left(\mathrm{S}_{\text {min }}\right)==50.000 \mathrm{~mm}$
Selected spacing $(S)=69.62 \mathrm{~mm}$
$\mathrm{S}_{\min }<=\mathrm{S}<=\mathrm{S}_{\text {max }}$ and selected bar size $<$ selected maximum bar size \ldots
The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

\#10@65.000 mm o.c.

Top Reinforcement Design

Minimum Area of Steel $\left(\mathrm{A}_{\text {stmin }}\right)=2289.120 \mathrm{~mm} 2$

$$
\begin{aligned}
\text { Calculated Area of Steel }\left(\mathrm{A}_{\mathrm{st}}\right) & =2284.560 \mathrm{~mm} 2 \\
\text { Provided Area of Steel }\left(\mathrm{A}_{\mathrm{st}, \text { Provided }}\right) & =2289.120 \mathrm{~mm} 2 \\
\mathrm{~A}_{\mathrm{stmin}}<=\mathrm{A}_{\mathrm{st}, \text { Provided }} & \text { Steel area is accepted } \\
\text { Governing Moment } & =0.000 \mathrm{kNm}
\end{aligned}
$$

$\begin{aligned} \text { Selected Bar Dia } & =8.000 \\ \text { Minimum spacing allowed }\left(\mathrm{S}_{\min }\right) & =50.000 \mathrm{~mm} \\ \text { Selected spacing }(\mathrm{S}) & =82.044 \mathrm{~mm} \\ \mathrm{~S}_{\min }<=\mathrm{S} & <=\mathrm{S}_{\max } \text { and selected bar size }<\text { selected maximum bar size... }\end{aligned}$
The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

\#8 @ 80.000 mm o.c.

Minimum Area of Steel $\left(\mathrm{A}_{\text {stmin }}\right)=2289.120 \mathrm{~mm} 2$
Calculated Area of Steel $\left(\mathrm{A}_{\mathrm{st}}\right)=2284.560 \mathrm{~mm} 2$

$$
\begin{array}{r}
\text { Provided Area of Steel }\left(\mathrm{A}_{\text {st,Provided }}\right)=2289.120 \mathrm{~mm} 2 \\
\mathrm{~A}_{\text {stmin }}<=\mathrm{A}_{\text {st,Provided }} \\
\text { Steel area is accepted } \\
\text { Governing Moment }=0.000 \mathrm{kNm}
\end{array}
$$

$$
\begin{aligned}
\text { Selected Bar Dia } & =8.000 \\
\text { Minimum spacing allowed }\left(\mathrm{S}_{\mathrm{min}}\right)= & =50.000 \mathrm{~mm} \\
\text { Selected spacing }(\mathrm{S}) & =82.044 \mathrm{~mm}
\end{aligned}
$$

$$
\mathrm{S}_{\min }<=\mathrm{S}<=\mathrm{S}_{\max } \text { and selected bar size }<\text { selected maximum bar size... }
$$

The reinforcement is accepted.

Based on spacing reinforcement increment; provided reinforcement is

\#8@ 80.000 mm o.c.

The figure shows layout of foundations for each and every column.
Here we can observe that some of the footings coincide as they are very near, in such situations combined(strap or cantilever) is laid.

Reinforcement details of column is shown below

Fig 8.2.1 elevation of reinforcements

Fig 8.2.b plan of reinforcement

Staad Editor:

STAAD SPACE
START JOB INFORMATION
ENGINEER DATE 14-Apr-08
END JOB INFORMATION
INPUT WIDTH 79
UNIT METER KN
JOINT COORDINATES
$1000 ; 2$ 6.445 $00 ; 300$ 3.65; 400 7.29; 66.4450 7.29; 910.5100 ; $106.44503 .65 ; 1110.5103 .65 ; 126.44507 .3$; 1310.5107 .3 ; 1400 13.235; 156.4407 .29 ; 166.440 13.235; 1710.5107 .29 ; 1810.510 13.235; $1924.15300 ; 2030.59800 ; 2124.15303 .65$; $2224.15307 .29 ; 2334.66300 ; 2430.5930$ 7.29; 2530.5980 3.65; $2630.59807 .29 ; 2734.6630$ 3.65; 2830.5980 7.3; 2934.6630 7.3;

30 34.663 0 7.29; 3124.1530 13.235; 3230.5930 13.235; 3512.083015 .35 ; 368.6680 15.35; 375.0880 15.35; 381.2230 15.35; 39 -2.542 0 15.35; 40 -2.542 0 21.06; 411.2280 15.35; 421.2280 21.06; 44 -2.542 0 24.59; 45 -2.542 0 28.12; 460.2040 28.12; 474.7880 28.12; 508.6730 15.35;
518.6730 21.06; 5212.0830 18.92; 5312.0830 23.35; 5412.0830 26.325;
5512.0830 29.255; 5823.2130 26.325; 5923.2130 29.255; 6116.3070 29.255;
624.7880 24.59; 6316.3030 26.325; 6416.3030 29.255; 6520.1030 26.325;

66 20.103 0 29.255; 67 20.103 0 21.825; 6823.213021 .825 ; 6916.303021 .825 ;
70 16.303 0 18.92; 7117.6130 15.35; 7223.2130 15.35; 7323.2130 18.92;
74 19.488 0 18.92; 778.6680 24.59; 788.6680 28.12; 7926.2580 15.35;
8030.023015 .35 ; 8130.028015 .35 ; 8233.8880 15.35; 8337.468015 .35 ;
$8437.473015 .35 ; 8526.258021 .06 ; 8630.028021 .06 ; 8726.258024 .59$; 88 26.258 0 28.12; 8933.5880 28.12; 9029.0040 28.12; 9137.473021 .06 ; 92 33.588 0 24.59; 93 37.468 0 24.59; 9437.4680 28.12; 9513.510 13.235; 9613.510 4.49; 9720.6630 4.49; 9920.6630 13.235; 100030 ; 101 6.445 30; 10203 3.65; 10303 7.29; 1046.4453 7.29; 10510.5130 ; 1066.445 3 3.65; 10710.513 3.65; $1086.44537 .3 ; 10910.5137 .3$; 11003 13.235; 1116.443 7.29; 1126.443 13.235; 11310.513 7.29; 11410.513 13.235; 11524.15330 0; 11630.59830 0; 11724.15333 .65 ; 11824.1533 7.29; 11934.6633 0; 12030.59337 .29 ; 12130.59833 .65 ; 12230.5983 7.29; 12334.663 3 3.65; 12430.5983 7.3; 12534.66337 .3 ;
12634.6633 7.29; 12724.1533 13.235; 12830.5933 13.235;
12934.6633 13.235; $13012.083315 .35 ; 1318.668315 .35 ; 1325.088315 .35$;

133 1.223 3 15.35; 134 -2.542 3 15.35; 135-2.542 31.06; 1361.228315 .35 ;
1371.2283 21.06; 138 -2.542 324.59; 139 -2.542 328.12; 1400.2043 28.12;
1414.7883 28.12; 1428.6733 15.35; 1438.6733 21.06; 14412.0833 18.92;
14512.0833 23.35; 14612.0833 26.325; 14712.0833 29.255;
14823.2133 26.325; 14923.2133 29.255; 15016.3073 29.255;
$1514.788324 .59 ; 15216.303326 .325 ; 15316.303329 .255$;
15420.1033 26.325; 15520.1033 29.255; 15620.103321 .825 ;
15723.2133 21.825; 15816.3033 21.825; 15916.3033 18.92;

160 17.613 3 15.35; 16123.2133 15.35; 16223.2133 18.92; 16319.4883 18.92;
1648.6683 24.59; 165 8.668 3 28.12; 16626.258315 .35 ; 16730.023315 .35 ;
16830.0283 15.35; 16933.8883 15.35; 17037.4683 15.35; 17137.4733 15.35;

172 26.258 3 21.06; 17330.0283 21.06; 17426.2583 24.59; 17526.2583 28.12;
17633.5883 28.12; 17729.0043 28.12; 17837.4733 21.06; 17933.5883 24.59;
18037.4683 24.59; 18137.4683 28.12; 18213.513 13.235; 18313.5134 .49 ; 18420.6633 4.49; 18620.6633 13.235; 18933.8883 13.25; 1906.443 15.335; 19106 0; 1926.4456 0; 19306 3.65; 194067.29 ; 1956.44567 .29 ; $19610.5160 ; 1976.44563 .65 ; 19810.5163 .65 ; 1996.44567 .3$; 200 10.51 $67.3 ; 20106$ 13.235; $2026.4467 .29 ; 2036.446$ 13.235; $20410.5167 .29 ; 20510.51613 .235 ; 20624.15360 ; 20730.59860$; 20824.1536 3.65; $20924.15367 .29 ; 21034.66360 ; 21130.59367 .29$; 21230.5986 3.65; $21330.59867 .29 ; 21434.66363 .65 ; 21530.59867 .3$; $21634.66367 .3 ; 21734.66367 .29 ; 21824.1536$ 13.235; 21930.5936 13.235; 22034.6636 13.235; 22112.0836 15.35; $2228.668615 .35 ; 2235.088615 .35$; 2241.2236 15.35; 225 -2.542 6 15.35; 226 -2.542 6 21.06; 2271.2286 15.35; 2281.2286 21.06; 229 -2.542 6 24.59; 230-2.542 6 28.12; 2310.2046 28.12; 2324.7886 28.12; 2338.6736 15.35; 2348.6736 21.06; 23512.0836 18.92; 23612.0836 23.35; 23712.0836 26.325; 23812.0836 29.255; $23923.213626 .325 ; 24023.213629 .255 ; 24116.3076$ 29.255; 2424.7886 24.59; 243 16.303 $626.325 ; 24416.3036$ 29.255; 24520.1036 26.325; 24620.1036 29.255; 24720.103621 .825 ; 24823.2136 21.825; $24916.303621 .825 ; 25016.303618 .92$; $25117.613615 .35 ; 25223.213615 .35 ; 25323.2136$ 18.92; 25419.4886 18.92; 2558.6686 24.59; 2568.6686 28.12; 25726.2586 15.35; 25830.023615 .35 ; $25930.028615 .35 ; 26033.888615 .35$; 26137.4686 15.35; 26237.473615 .35 ; 263 26.258 6 21.06; 26430.0286 21.06; 26526.2586 24.59; 266 26.258 6 28.12; 267 33.588 6 28.12; 26829.0046 28.12; 26937.4736 21.06; 27033.5886 24.59; 27137.4686 24.59; 27237.4686 28.12; 27313.516 13.235; 27413.5164 .49 ; 275 20.663 6 4.49; 27620.6636 13.235; 27733.8886 13.25; 2786.446 15.335;

27909 0; 2806.4459 0; 28109 3.65; 282097.29 ; 2836.4459 7.29;
$28410.5190 ; 2856.44593 .65 ; 28610.5193 .65 ; 2876.44597 .3$;
288 10.51 9 7.3; 28909 13.235; 2906.449 7.29; 2916.449 13.235;
$29210.5197 .29 ; 29310.519$ 13.235; 29424.1539 0; 29530.59890 ;
29624.1539 3.65; $29724.15397 .29 ; 29834.6639$ 0; 29930.59397 .29 ;
30030.5989 3.65; $30130.59897 .29 ; 30234.66393 .65 ; 30330.59897 .3$;
$30434.66397 .3 ; 30534.66397 .29 ; 30624.153913 .235 ; 30730.5939$ 13.235;
$30834.663913 .235 ; 30912.083915 .35 ; 3108.668915 .35 ; 3115.088915 .35$;
$3121.223915 .35 ; 313-2.542915 .35 ; 314-2.542921 .06 ; 3151.228915 .35 ;$
3161.2289 21.06; 317 -2.542 9 24.59; 318-2.542 9 28.12; 3190.2049 28.12;
3204.7889 28.12; 3218.6739 15.35; $3228.673921 .06 ; 32312.083918 .92$;
32412.0839 23.35; 32512.0839 26.325; 32612.0839 29.255;
$32723.213926 .325 ; 32823.213929 .255 ; 32916.3079$ 29.255;
3304.7889 24.59; $33116.303926 .325 ; 33216.3039$ 29.255;
$33320.103926 .325 ; 33420.1039$ 29.255; 33520.1039 21.825;
33623.2139 21.825; $33716.303921 .825 ; 33816.3039$ 18.92;
$33917.613915 .35 ; 34023.213915 .35 ; 34123.2139$ 18.92; 34219.4889 18.92;
3438.6689 24.59; 3448.6689 28.12; 34526.2589 15.35; 34630.023915 .35 ;
$34730.028915 .35 ; 34833.888915 .35 ; 34937.468915 .35 ; 35037.473915 .35$;
35126.2589 21.06; 35230.0289 21.06; 35326.2589 24.59; 35426.2589 28.12;
35533.5889 28.12; 35629.0049 28.12; 35737.4739 21.06; 35833.5889 24.59;
35937.4689 24.59; 36037.4689 28.12; $36113.51913 .235 ; 36213.5194 .49$;

363 20.663 9 4.49; $36420.663913 .235 ; 36533.888913 .25 ; 3666.44915 .335$;
$3670120 ; 3686.445120 ; 3690123.65 ; 3700127.29 ; 3716.445127 .29$;
$37210.51120 ; 3736.445123 .65 ; 37410.51123 .65 ; 3756.445127 .3 ;$
$37610.51127 .3 ; 37701213.235 ; 3786.44127 .29 ; 3796.441213 .235$;
$38010.51127 .29 ; 38110.511213 .235 ; 38224.153120 ; 38330.598120$;
$38424.153123 .65 ; 38524.153127 .29 ; 38634.663120 ; 38730.593127 .29$;
38830.59812 3.65; $38930.598127 .29 ; 39034.663123 .65 ; 39130.598127 .3$;
$39234.663127 .3 ; 39334.663127 .29 ; 39424.1531213 .235$;
$39530.5931213 .235 ; 39634.6631213 .235 ; 39712.0831215 .35$;
$3988.6681215 .35 ; 3995.0881215 .35 ; 4001.2231215 .35$;
401 -2.542 12 15.35; 402 -2.542 12 21.06; 4031.22812 15.35;
4041.22812 21.06; 405 -2.542 12 24.59; 406-2.542 12 28.12;
4070.20412 28.12; 4084.78812 28.12; $4098.6731215 .35 ; 4108.67312$ 21.06;
$41112.0831218 .92 ; 41212.0831223 .35 ; 41312.0831226 .325 ;$
41412.08312 29.255; 41523.21312 26.325; 41623.21312 29.255;
41716.30712 29.255; 4184.78812 24.59; 41916.30312 26.325;

420 16.303 12 29.255; 42120.10312 26.325; 42220.10312 29.255;
42320.10312 21.825; $42423.2131221 .825 ; 42516.3031221 .825$;
42616.30312 18.92; $42717.6131215 .35 ; 42823.2131215 .35$;
42923.21312 18.92; 43019.48812 18.92; 4318.66812 24.59;
4328.66812 28.12; 43326.25812 15.35; 43430.0231215 .35 ;
$43530.0281215 .35 ; 43633.8881215 .35 ; 43737.4681215 .35$;
$43837.4731215 .35 ; 43926.25812$ 21.06; 44030.02812 21.06;
44126.25812 24.59; 44226.25812 28.12; 44333.58812 28.12;

444 29.004 12 28.12; 44537.47312 21.06; 44633.58812 24.59;
44737.46812 24.59; 44837.46812 28.12; 44913.5112 13.235;
$45013.51124 .49 ; 45120.663124 .49 ; 45220.6631213 .235$;
$45333.8881213 .25 ; 4546.441215 .335 ; 4550150 ; 4566.445150$;
$4570153.65 ; 4580157.29 ; 4596.445157 .29 ; 46010.51150$;
4616.44515 3.65; 46210.5115 3.65; $4636.445157 .3 ; 46410.51157 .3$;

465015 13.235; $4666.44157 .29 ; 4676.4415$ 13.235; 46810.51157 .29 ;
$46910.511513 .235 ; 47024.153150 ; 47130.598150 ; 47224.153153 .65$;
$47324.153157 .29 ; 47434.663150 ; 47530.593157 .29 ; 47630.598153 .65$;
$47730.598157 .29 ; 47834.66315$ 3.65; $47930.598157 .3 ; 48034.663157 .3$;
$48134.663157 .29 ; 48224.15315$ 13.235; 48330.5931513 .235 ;
$48434.6631513 .235 ; 48512.0831515 .35 ; 4868.6681515 .35$;
4875.08815 15.35; $4881.2231515 .35 ; 489-2.5421515 .35$;

490 -2.542 15 21.06; 4911.22815 15.35; 4921.22815 21.06;
493 -2.542 15 24.59; 494 -2.542 15 28.12; 4950.20415 28.12;
4964.78815 28.12; 4978.67315 15.35; 4988.67315 21.06; $49912.0831518 .92 ; 50012.0831523 .35 ; 50112.0831526 .325$; 50212.08315 29.255; 50323.21315 26.325; 50423.21315 29.255; 50516.30715 29.255; 5064.78815 24.59; 50716.3031526 .325 ;
50816.30315 29.255; 50920.10315 26.325; 51020.10315 29.255;
51120.10315 21.825; $51223.2131521 .825 ; 51316.3031521 .825$; $51416.3031518 .92 ; 51517.6131515 .35 ; 51623.2131515 .35$; $51723.2131518 .92 ; 51819.48815$ 18.92; 5198.66815 24.59; 5208.66815 28.12; $52126.2581515 .35 ; 52230.0231515 .35$; $52330.0281515 .35 ; 52433.8881515 .35 ; 52537.4681515 .35$; 52637.47315 15.35; 52726.25815 21.06; 52830.0281521 .06 ;
52926.25815 24.59; 53026.25815 28.12; 53133.58815 28.12; 532 29.004 15 28.12; 53337.47315 21.06; 53433.58815 24.59; 53537.46815 24.59; 53637.46815 28.12; 53713.511513 .235 ;
$53813.51154 .49 ; 53920.663154 .49 ; 54020.66315$ 13.235;
54133.88815 13.25; $5426.441515 .335 ; 5430180 ; 5446.445180$; 545018 3.65; 546018 7.29; $5476.445187 .29 ; 54810.51180$;
5496.44518 3.65; 55010.5118 3.65; $5516.445187 .3 ; 55210.51187 .3$;

553018 13.235; $5546.44187 .29 ; 5556.4418$ 13.235; 55610.51187 .29 ;
55710.5118 13.235; $55824.153180 ; 55930.598180 ; 56024.15318$ 3.65;

561 24.153 18 7.29; $56234.663180 ; 56330.593187 .29 ; 56430.59818$ 3.65;
$56530.598187 .29 ; 56634.66318$ 3.65; $56730.598187 .3 ; 56834.663187 .3$;
569 34.663 18 7.29; $57024.1531813 .235 ; 57130.5931813 .235$;
$57234.6631813 .235 ; 57312.0831815 .35 ; 5748.6681815 .35$;
5755.08818 15.35; $5761.2231815 .35 ; 577-2.5421815 .35$;

578 -2.542 18 21.06; $5791.2281815 .35 ; 5801.22818$ 21.06;
581 -2.542 18 24.59; 582 -2.542 18 28.12; 5830.20418 28.12;
5844.78818 28.12; $5858.6731815 .35 ; 5868.67318$ 21.06;
58712.08318 18.92; 58812.08318 23.35; 58912.08318 26.325;
59012.08318 29.255; 59123.21318 26.325; 59223.21318 29.255;

593 16.307 18 29.255; 5944.78818 24.59; 59516.30318 26.325;
59616.30318 29.255; 59720.10318 26.325; 59820.10318 29.255;
$59920.1031821 .825 ; 60023.2131821 .825 ; 60116.3031821 .825$;
60216.30318 18.92; $60317.6131815 .35 ; 60423.2131815 .35$;
60523.21318 18.92; 60619.48818 18.92; 6078.66818 24.59;
6088.66818 28.12; $60926.2581815 .35 ; 61030.0231815 .35$;
$61130.0281815 .35 ; 61233.8881815 .35 ; 61337.4681815 .35$;
61437.47318 15.35; 61526.25818 21.06; 61630.02818 21.06;
61726.25818 24.59; $61826.2581828 .12 ; 61933.58818$ 28.12;
62029.00418 28.12; $62137.4731821 .06 ; 62233.5881824 .59$; 62337.46818 24.59; 62437.46818 28.12; 62513.5118 13.235; $62613.51184 .49 ; 62720.663184 .49 ; 62820.66318$ 13.235; 62933.88818 13.25; $6306.441815 .335 ; 6310210 ; 6326.445210$; 633021 3.65; 634021 7.29; 6356.44521 7.29; 63610.51210 ; $6376.445213 .65 ; 63810.51213 .65 ; 6396.445217 .3 ; 64010.51217 .3$; 641021 13.235; $6426.44217 .29 ; 6436.4421$ 13.235; 64410.51217 .29 ; 64510.5121 13.235; $64624.153210 ; 64730.598210 ; 64824.153213 .65$; $64924.153217 .29 ; 65034.66321$ 0; $65130.593217 .29 ; 65230.598213 .65$; $65330.598217 .29 ; 65434.663213 .65 ; 65530.598217 .3 ; 65634.663217 .3$; $65734.663217 .29 ; 65824.1532113 .235 ; 65930.5932113 .235$;
$66034.6632113 .235 ; 66112.0832115 .35 ; 6628.6682115 .35$; 6635.08821 15.35; $6641.2232115 .35 ; 665-2.5422115 .35$; 666-2.542 21 21.06; 6671.22821 15.35; 6681.22821 21.06; 669 -2.542 21 24.59; 670 -2.542 21 28.12; 6710.20421 28.12; 6724.78821 28.12; 6738.67321 15.35; 6748.67321 21.06; $67512.0832118 .92 ; 67612.0832123 .35 ; 67712.0832126 .325$; $67812.0832129 .255 ; 67923.2132126 .325 ; 68023.21321$ 29.255; 68116.30721 29.255; 6824.78821 24.59; 68316.30321 26.325; 68416.30321 29.255; 68520.10321 26.325; 68620.10321 29.255; $68720.1032121 .825 ; 68823.2132121 .825 ; 68916.3032121 .825$; 69016.30321 18.92; $69117.6132115 .35 ; 69223.2132115 .35$; 69323.21321 18.92; 69419.48821 18.92; 6958.6682124 .59 ;
6968.66821 28.12; 69726.25821 15.35; 69830.02321 15.35;
69930.02821 15.35; 70033.88821 15.35; 70137.4682115 .35 ;
70237.47321 15.35; 70326.25821 21.06; 70430.02821 21.06;
70526.25821 24.59; 70626.25821 28.12; 70733.58821 28.12;
70829.00421 28.12; 70937.47321 21.06; 71033.58821 24.59;
71137.46821 24.59; 71237.46821 28.12; 71313.5121 13.235;
71413.5121 4.49; 71520.66321 4.49; 71620.66321 13.235;
$71733.8882113 .25 ; 7186.442115 .335$;
MEMBER INCIDENCES
1311 100; 1322 101; 1333 102; 1344 103; 1356 104; 1369 105; 13710 106;
13811 107; 13912 108; 14013 109; 14114 110; 14215 111; 14316 112; 14417 113; 14518 114; 14619 115; 14720 116; 14821 117; 14922 118; 15023 119; 15124 120; 15225 121; 15326 122; 15427 123; 15528 124; 15629 125; 15730 126; 15831 127; 15932 128; 16135 130; 16236 131; 16337 132; 16438 133; 16539 134; 16640 135; 16741 136; 16842 137; 16944 138; 17045 139; 17146 140; 17247 141; 17350 142; 17451 143; 17552 144; 17653 145; 17754 146; 17855 147; 17958 148; 18059 149; 18161 150; 18262 151; 18363 152; 18464 153; 18565 154; 18666 155; 18767 156; 18868 157; 18969 158; 19070 159; 19171 160; 19272 161; 19373 162; 19474 163; 19577 164; 19678 165; 19779 166; 19880 167; 19981 168; 20082 169; 20183 170; 20284 171; 20385 172; 20486 173; 20587 174; 20688 175; 20789 176; 20890 177; 20991 178; 21092 179; 21193 180; 21294 181; 21395 182; 21496 183; 21597 184; 21799 186; 218100 101; 219100 102; 220102 103; 221101 105; 222103 111; 223102 106; 224101 106; 225106 104; 226106 107; 227108 109; 228105 107; 229107 113; 230103 110; 231111 104; 232111 112; 233113 109; 235115 116; 236115 117; 237117 118; $238116119 ; 239118120 ; 240117$ 121; 241116 121; 242121 122;

243121 123; $244124125 ; 245119$ 123; 246123 126; 247118 127; 248120 122; 249120 128; 250126 125; 252110 112; 253112 114; 254127 128; 255128 129; 256134 133; 257133 136; 258132 131; 259131 142; 260134 135; 261136 132; 262136 137; 263135 138; 264138 139; 265141 140; 266140 139; 267142 130; 268142 143; 269130 144; 270144 145; 271145 146; 272146 147; 273135 137; 274150 153; 275148 149; 276141 151; 277151 138; 278153 147; 279152 153; 280146 152; 281154 155; 282152 154; 284154 148; 285155 149; 286156 154; 287157 148; 289144 159; 290130 160; 291160 161; 292161 162; 293162 157; 294162 163; 297157 156; 298137 143; 299164 165; 300141 165; 301164 143; 302151 164; 303166 167; 304167 168; 305169 170; 306170 171; 307166 172; 308168 169; $309168173 ; 310172$ 174; $311174175 ; 312176177 ; 313177175$; 314171 178; $315172173 ; 316176179 ; 317179174 ; 318173178 ; 319180181$; 320176 181; $321180178 ; 322179$ 180; 323114 182; 324161 166; 325182 183; 326183 184; 327184 186; 328182 186; 1263186 127; 1264112 190; 1265189 169; 126918 17; 1271129 126; 1272159 158; 1273158 152; 1274163 159; 1275109 114; 1276100 191; 1277101 192; 1278102 193; 1279103 194; 1280104 195; 1281105 196; 1282106 197; 1283107 198; 1284108 199; 1285109 200; 1286110 201; 1287111 202; 1288112 203; 1289113 204; 1290114 205; 1291115 206; 1292116 207; 1293117 208; 1294118 209; 1295119 210; 1296120 211; 1297121 212; 1298122 213; 1299123 214; $1300124215 ; 1301125216 ; 1302126217 ; 1303127218$; 1304128 219; 1305129 220; 1306130 221; 1307131 222; 1308132 223; 1309133 224; 1310134 225; 1311135 226; 1312136 227; 1313137228 ; 1314138 229; 1315139 230; 1316140 231; 1317141 232; 1318142 233; 1319143 234; 1320144 235; 1321145 236; 1322146 237; 1323147238 ;

1324148 239; 1325149 240; 1326150 241; 1327151 242; 1328152 243;
1329153 244; 1330154 245; 1331155 246; 1332156 247; 1333157 248; 1334158 249; 1335159 250; 1336160 251; 1337161 252; 1338162 253; 1339163 254; 1340164255 ; 1341165 256; 1342166 257; 1343167258 ; 1344168 259; 1345169 260; 1346170 261; 1347171 262; 1348172 263; 1349173 264; 1350174 265; 1351175 266; 1352176 267; 1353177 268; 1354178 269; 1355179 270; 1356180 271; 1357181 272; 1358182 273; 1359183 274; 1360184 275; 1361186 276; 1362189 277; $1363190278 ;$ 1364191 192; 1365191 193; 1366193 194; 1367192 196; 1368194 202; 1369193 197; 1370192 197; 1371197 195; 1372197 198; 1373199 200; 1374196 198; 1375198 204; 1376194 201; 1377202 195; 1378202 203; 1379204 200; 1380206 207; 1381206 208; 1382208 209; 1383207 210; 1384209 211; 1385208 212; 1386207 212; 1387212 213; 1388212 214; 1389215 216; 1390210 214; 1391214 217; 1392209 218; 1393211 213; 1394211 219; 1395217 216; 1396201 203; 1397203 205; 1398218 219; 1399219 220; 1400225 224; 1401224 227; 1402223 222; 1403222 233; 1404225 226; 1405227 223; 1406227 228; 1407226 229; 1408229 230; 1409232 231; 1410231 230; 1411233 221; 1412233 234; 1413221 235; 1414235 236; 1415236 237; 1416237 238; 1417226 228; 1418241 244; 1419239 240; 1420232 242; 1421242 229; 1422244 238; 1423243 244; 1424237 243; 1425245 246; 1426243 245; 1427245 239; 1428246 240; 1429247 245; 1430248 239; 1431235 250; 1432221 251; 1433251 252; 1434252 253; 1435253 248; 1436253 254; 1437248 247; 1438228 234; 1439255 256; 1440232 256; 1441255 234; 1442242 255; 1443257 258; 1444258 259; 1445260 261; 1446261 262; 1447257 263; 1448259 260;

1449259 264; 1450263 265; 1451265 266; 1452267 268; 1453268 266; 1454262 269; 1455263 264; 1456267 270; 1457270 265; 1458264 269; 1459271 272; 1460267 272; 1461271 269; 1462270 271; 1463205 273; 1464252 257; 1465273 274; 1466274 275; 1467275 276; 1468273 276; 1469276 218; 1470203 278; 1471277 260; 1472220 217; 1473250 249; 1474249 243; 1475254 250; 1476200 205; 1477191 279; 1478192 280; 1479193 281; 1480194 282; 1481195 283; 1482196 284; 1483197 285; 1484198 286; 1485199 287; 1486200 288; 1487201 289; 1488202 290; 1489203 291; 1490204 292; 1491205 293; 1492206 294; 1493207 295; 1494208 296; 1495209 297; 1496210 298; 1497211 299; 1498212 300; 1499213 301; 1500214 302; 1501215 303; 1502216 304; 1503217305 ; 1504218 306; 1505219 307; 1506220 308; 1507221 309; 1508222 310; 1509223 311; 1510224 312; 1511225 313; 1512226 314; 1513227 315; 1514228 316; 1515229 317; 1516230 318; 1517231 319; 1518232 320; 1519233 321; 1520234 322; 1521235 323; 1522236 324; 1523237 325; 1524238 326; 1525239 327; 1526240 328; 1527241 329; 1528242 330; 1529243 331; 1530244 332; 1531245 333; 1532246 334; 1533247 335; 1534248 336; 1535249 337; 1536250 338; 1537251 339; 1538252 340; 1539253 341; 1540254 342; 1541255 343; 1542256 344; 1543257345 ; 1544258 346; 1545259 347; 1546260 348; 1547261 349; 1548262 350; 1549263 351; 1550264 352; 1551265 353; 1552266 354; 1553267 355; 1554268 356; 1555269 357; 1556270 358; 1557271 359; 1558272 360; 1559273 361; 1560274 362; 1561275 363; 1562276 364; 1563277 365; 1564278 366; 1565279 280; 1566279 281; 1567281 282; 1568280 284; 1569282 290; 1570281 285; 1571280 285; 1572285 283; 1573285 286;

1574287 288; 1575284 286; 1576286 292; 1577282 289; 1578290 283; 1579290 291; 1580292 288; 1581294 295; 1582294 296; 1583296 297; 1584295 298; 1585297 299; 1586296 300; 1587295 300; 1588300 301; 1589300 302; 1590303 304; 1591298 302; 1592302 305; 1593297 306; 1594299 301; 1595299 307; 1596305 304; 1597289 291; 1598291 293; $1599306307 ; 1600307$ 308; 1601313 312; 1602312315 ; 1603311310 ; $1604310321 ; 1605313314 ; 1606315311 ; 1607315316 ; 1608314317$; 1609317 318; 1610320 319; 1611319 318; 1612321 309; 1613321 322; 1614309 323; 1615323 324; $1616324325 ; 1617325$ 326; 1618314316 ; 1619329 332; 1620327 328; 1621320 330; 1622330 317; 1623332 326; 1624331 332; $1625325331 ; 1626333$ 334; $1627331333 ; 1628333$ 327; 1629334 328; 1630335 333; 1631336 327; 1632323 338; 1633309 339; 1634339 340; 1635340 341; 1636341 336; 1637341 342; 1638336335 ; 1639316 322; 1640343 344; 1641320 344; 1642343 322; 1643330343 ; 1644345 346; 1645346 347; 1646348 349; 1647349 350; 1648345 351; 1649347 348; 1650347 352; 1651351 353; 1652353 354; 1653355 356; 1654356 354; 1655350357 ; 1656351 352; 1657355358 ; 1658358353 ; 1659352 357; 1660359 360; 1661355 360; 1662359357 ; 1663358359 ; 1664293 361; 1665340 345; 1666361 362; 1667362 363; 1668363 364; 1669361 364; 1670364 306; 1671291 366; 1672365 348; 1673308305 ; 1674338 337; 1675337 331; 1676342 338; 1677288 293; 1678279 367; 1679280 368; 1680281 369; 1681282 370; 1682283 371; 1683284 372; 1684285 373; 1685286 374; 1686287 375; 1687288 376; 1688289 377; 1689290 378; 1690291 379; 1691292 380; 1692293 381; 1693294 382; 1694295 383; 1695296 384; 1696297 385; 1697298 386; 1698299 387;

1699300 388; 1700301 389; 1701302 390; 1702303 391; 1703304 392; 1704305 393; 1705306 394; 1706307 395; 1707308 396; 1708309 397; 1709310 398; 1710311 399; 1711312 400; 1712313 401; 1713314 402; $1714315403 ; 1715316404 ; 1716317405 ; 1717318406 ; 1718319407$; 1719320 408; 1720321 409; 1721322 410; 1722323 411; 1723324 412; $1724325413 ; 1725326414 ; 1726327415 ; 1727328416 ; 1728329417$; 1729330 418; 1730331 419; 1731332 420; 1732333 421; 1733334 422; 1734335 423; 1735336 424; 1736337 425; 1737338 426; 1738339 427; 1739340 428; 1740341 429; 1741342 430; 1742343 431; 1743344 432; 1744345 433; 1745346 434; 1746347 435; 1747348 436; 1748349 437; $1749350438 ; 1750351439 ; 1751352440 ; 1752353441 ; 1753354442$; 1754355 443; 1755356 444; 1756357 445; 1757358 446; 1758359 447; 1759360 448; 1760361 449; 1761362 450; 1762363 451; 1763364 452; 1764365 453; 1765366 454; 1766367 368; 1767367 369; 1768369 370; 1769368 372; 1770370 378; 1771369 373; 1772368 373; 1773373 371; 1774373 374; 1775375 376; 1776372 374; 1777374 380; 1778370 377; 1779378 371; 1780378 379; 1781380 376; 1782382 383; 1783382 384; 1784384 385; 1785383 386; 1786385 387; 1787384 388; 1788383 388; 1789388 389; 1790388 390; 1791391 392; 1792386 390; 1793390 393; 1794385 394; 1795387 389; 1796387 395; 1797393 392; 1798377 379; 1799379 381; 1800394 395; 1801395 396; 1802401 400; 1803400 403; 1804399 398; 1805398 409; 1806401 402; 1807403 399; 1808403 404; 1809402 405; 1810405 406; 1811408 407; 1812407 406; 1813409 397; 1814409 410; $1815397411 ; 1816411412 ; 1817412413 ; 1818413414$; 1819402 404; 1820417 420; 1821415 416; 1822408 418; 1823418405 ;

1824420 414; 1825419 420; 1826413 419; 1827421 422; 1828419 421; 1829421 415; 1830422 416; 1831423 421; 1832424 415; 1833411 426; 1834397 427; 1835427 428; 1836428 429; 1837429 424; 1838429 430; 1839424 423; 1840404 410; 1841431 432; 1842408 432; 1843431410 ; 1844418 431; 1845433 434; 1846434 435; 1847436 437; 1848437 438; 1849433 439; 1850435 436; 1851435 440; 1852439 441; 1853441 442; 1854443 444; 1855444 442; 1856438 445; 1857439 440; 1858443 446; 1859446 441; 1860440 445; 1861447 448; 1862443 448; 1863447445 ; 1864446 447; 1865381 449; 1866428 433; 1867449 450; 1868450 451; 1869451 452; 1870449 452; 1871452 394; 1872379 454; 1873453 436; 1874396 393; 1875426 425; 1876425 419; 1877430 426; 1878376 381; 1879367 455; 1880368 456; 1881369 457; 1882370458 ; 1883371 459; 1884372 460; 1885373 461; 1886374 462; 1887375 463; 1888376 464; 1889377 465; 1890378 466; 1891379 467; 1892380 468; 1893381 469; 1894382 470; 1895383 471; 1896384 472; 1897385 473; 1898386 474; 1899387 475; 1900388 476; 1901389 477; 1902390 478; 1903391 479; 1904392 480; 1905393 481; 1906394 482; 1907395 483; 1908396 484; 1909397 485; 1910398 486; 1911399 487; 1912400 488; 1913401 489; 1914402 490; 1915403 491; 1916404 492; 1917405 493; 1918406 494; 1919407 495; 1920408 496; 1921409 497; 1922410 498; 1923411 499; 1924412 500; 1925413 501; 1926414 502; 1927415 503; 1928416 504; 1929417 505; 1930418 506; 1931419 507; 1932420 508; 1933421 509; 1934422 510; 1935423 511; 1936424 512; 1937425 513; 1938426 514; 1939427 515; 1940428 516; 1941429 517; 1942430 518; 1943431 519; 1944432 520; 1945433 521; 1946434 522; 1947435 523; 1948436 524;

1949437 525; 1950438 526; 1951439 527; 1952440 528; 1953441 529; 1954442 530; 1955443 531; 1956444 532; 1957445 533; 1958446 534; 1959447 535; 1960448 536; 1961449 537; 1962450 538; 1963451 539; 1964452 540; 1965453 541; 1966454 542; 1967455 456; 1968455 457; 1969457 458; 1970456 460; 1971458 466; 1972457 461; 1973456 461; 1974461 459; 1975461 462; 1976463 464; 1977460 462; 1978462 468; 1979458 465; 1980466 459; 1981466 467; 1982468 464; 1983470 471; 1984470 472; 1985472 473; 1986471 474; 1987473 475; 1988472 476; 1989471 476; 1990476 477; 1991476 478; 1992479 480; 1993474 478; 1994478 481; 1995473 482; 1996475 477; 1997475 483; 1998481 480; 1999465 467; 2000467 469; 2001482 483; 2002483 484; 2003489 488; 2004488 491; 2005487 486; 2006486 497; 2007489 490; 2008491 487; 2009491 492; 2010490 493; 2011493 494; 2012496 495; 2013495 494; 2014497 485; 2015497 498; 2016485 499; 2017499 500; 2018500 501; 2019501 502; 2020490 492; 2021505 508; 2022503 504; 2023496 506; 2024506 493; 2025508 502; 2026507 508; 2027501 507; 2028509 510; 2029507 509; 2030509 503; 2031510 504; 2032511 509; 2033512 503; 2034499 514; 2035485 515; 2036515 516; 2037516 517; 2038517 512; 2039517 518; 2040512 511; 2041492 498; 2042519 520; 2043496 520; 2044519 498; 2045506 519; 2046521 522; 2047522 523; 2048524 525; 2049525 526; 2050521 527; 2051523 524; 2052523 528; 2053527 529; 2054529 530; 2055531 532; 2056532 530; 2057526 533; 2058527 528; 2059531 534; 2060534 529; 2061528 533; 2062535 536; 2063531 536; 2064535 533; 2065534 535; 2066469 537; 2067516 521; 2068537 538; 2069538 539; 2070539 540; 2071537 540; 2072540 482; 2073467 542;

2074541 524; 2075484 481; 2076514 513; 2077513 507; 2078518 514; 2079464 469; 2080455 543; 2081456 544; 2082457 545; 2083458 546; 2084459 547; 2085460 548; 2086461 549; 2087462 550; 2088463 551; 2089464 552; 2090465 553; 2091466 554; 2092467 555; 2093468 556; 2094469 557; 2095470 558; 2096471 559; 2097472 560; 2098473 561; 2099474 562; 2100475 563; 2101476 564; 2102477 565; 2103478 566; 2104479 567; 2105480 568; 2106481 569; 2107482 570; 2108483 571; 2109484 572; 2110485 573; 2111486 574; 2112487 575; 2113488 576; 2114489 577; 2115490 578; 2116491 579; 2117492 580; 2118493 581; 2119494 582; 2120495 583; 2121496 584; 2122497 585; 2123498 586; 2124499 587; 2125500 588; 2126501 589; 2127502 590; 2128503 591; 2129504 592; 2130505 593; 2131506 594; 2132507 595; 2133508 596; 2134509 597; 2135510 598; 2136511 599; 2137512 600; 2138513 601; 2139514 602; 2140515 603; 2141516 604; 2142517 605; 2143518 606; 2144519 607; 2145520 608; 2146521 609; 2147522 610; 2148523 611; 2149524 612; 2150525 613; 2151526 614; 2152527 615; 2153528 616; 2154529 617; 2155530 618; 2156531 619; 2157532 620; 2158533 621; 2159534 622; 2160535 623; 2161536 624; 2162537 625; 2163538 626; 2164539 627; 2165540 628; 2166541 629; 2167542 630; 2168543 544; 2169543 545; 2170545 546; 2171544 548; 2172546 554; 2173545 549; 2174544 549; 2175549 547; 2176549 550; 2177551 552; 2178548 550; 2179550 556; 2180546 553; 2181554 547; 2182554 555; 2183556 552; 2184558 559; $2185558560 ; 2186560561 ; 2187559562 ; 2188561$ 563; 2189560 564; 2190559 564; 2191564 565; 2192564 566; 2193567 568; 2194562 566; $2195566569 ; 2196561$ 570; 2197563 565; 2198563 571;

2199569 568; 2200553 555; 2201555 557; 2202570 571; 2203571 572; 2204577 576; 2205576 579; 2206575 574; 2207574 585; 2208577 578; 2209579 575; 2210579 580; 2211578 581; 2212581 582; 2213584 583; 2214583 582; 2215585 573; 2216585 586; 2217573 587; 2218587 588; 2219588 589; 2220589 590; 2221578 580; 2222593 596; 2223591 592; 2224584 594; 2225594 581; 2226596 590; 2227595 596; 2228589 595; 2229597 598; 2230595 597; 2231597 591; 2232598 592; 2233599 597; 2234600 591; 2235587 602; 2236573 603; 2237603 604; 2238604 605; 2239605 600; 2240605 606; 2241600 599; 2242580 586; 2243607 608; 2244584 608; 2245607 586; 2246594 607; 2247609 610; 2248610 611; 2249612 613; 2250613 614; 2251609 615; 2252611 612; 2253611 616; 2254615 617; 2255617 618; 2256619 620; 2257620 618; 2258614 621; 2259615 616; 2260619 622; 2261622 617; 2262616 621; 2263623 624; 2264619 624; $2265623621 ; 2266622623 ; 2267557625 ; 2268604609$; 2269625 626; 2270626 627; 2271627 628; 2272625 628; 2273628 570; 2274555 630; 2275629 612; 2276572 569; 2277602 601; 2278601 595; 2279606 602; 2280552 557; 2281543 631; 2282544 632; 2283545 633; 2284546 634; 2285547 635; 2286548 636; 2287549 637; 2288550 638; 2289551 639; 2290552 640; 2291553 641; 2292554 642; 2293555 643; 2294556 644; 2295557 645; 2296558 646; 2297559 647; 2298560 648; 2299561 649; 2300562 650; 2301563 651; 2302564 652; 2303565 653; 2304566 654; 2305567 655; 2306568 656; 2307569 657; 2308570 658; 2309571 659; 2310572 660; 2311573 661; 2312574 662; 2313575 663; 2314576 664; 2315577 665; 2316578 666; 2317579 667; 2318580 668; 2319581 669; 2320582 670; 2321583 671; 2322584 672; 2323585 673;

2324586 674; 2325587 675; 2326588 676; 2327589 677; 2328590 678; 2329591 679; 2330592 680; 2331593 681; 2332594 682; 2333595 683; 2334596 684; 2335597 685; 2336598 686; 2337599 687; 2338600 688; 2339601 689; 2340602 690; 2341603 691; 2342604 692; 2343605 693; 2344606 694; 2345607 695; 2346608 696; 2347609 697; 2348610698 ; 2349611 699; $2350612700 ; 2351613701 ; 2352614702 ; 2353615703$; 2354616 704; 2355617 705; 2356618 706; $2357619707 ; 2358620708$; 2359621 709; $2360622710 ; 2361623$ 711; $2362624712 ; 2363625713$; 2364626 714; 2365627 715; 2366628 716; $2367629717 ; 2368630718$; 2369631 632; 2370631 633; 2371633 634; 2372632 636; 2373634 642; 2374633 637; 2375632 637; 2376637 635; 2377637 638; 2378639 640; 2379636 638; 2380638 644; 2381634 641; 2382642 635; 2383642 643; 2384644 640; 2385646 647; 2386646 648; 2387648 649; 2388647 650; 2389649 651; 2390648 652; 2391647 652; 2392652 653; 2393652 654; 2394655 656; 2395650 654; 2396654 657; 2397649 658; 2398651 653; 2399651 659; 2400657 656; 2401641 643; 2402643 645; 2403658 659; 2404659 660; 2405665 664; 2406664 667; 2407663 662; 2408662 673; 2409665 666; 2410667 663; 2411667 668; 2412666 669; 2413669 670; 2414672 671; $2415671670 ; 2416673$ 661; 2417673 674; 2418661675 ; 2419675 676; 2420676 677; 2421677 678; 2422666 668; 2423681 684; 2424679 680; 2425672 682; 2426682 669; 2427684 678; 2428683 684; 2429677 683; 2430685 686; 2431683 685; 2432685 679; 2433686 680; 2434687 685; 2435688 679; 2436675 690; 2437661 691; 2438691 692; 2439692 693; 2440693 688; 2441693 694; 2442688 687; 2443668 674; 2444695 696; 2445672 696; 2446695 674; 2447682 695; 2448697 698;

2449698 699; 2450700 701; 2451701 702; 2452697 703; 2453699700 ; 2454699 704; 2455703 705; 2456705 706; 2457707 708; 2458708706 ; 2459702 709; 2460703 704; 2461707 710; 2462710 705; 2463704709 ; $2464711712 ; 2465707712 ; 2466711709 ; 2467710711 ; 2468645713$; 2469692 697; 2470713 714; $2471714715 ; 2472715716 ; 2473713716$; 2474716 658; 2475643 718; 2476717 700; 2477660 657; 2478690 689; 2479689 683; 2480694 690; 2481640 645;

DEFINE MATERIAL START

ISOTROPIC CONCRETE

E $2.17185 \mathrm{e}+007$
POISSON 0.17
DENSITY 23.5616
ALPHA 1e-005
DAMP 0.05
END DEFINE MATERIAL

MEMBER PROPERTY

132 TO 134138140144147 TO 149151153 TO 157159161163166169171172 174 TO 177179183185187 TO 195198 TO 200204205207 TO 2111277 TO 1279 1283128512891292 TO 129412961298 TO 1302130413061308131113141316 13171319 TO 13221324132813301332 TO 13401343 TO 1345134913501352 1353 TO 135613621478 TO 14801484148614901493 TO 149514971499 TO 1503 15051507150915121515151715181520 TO 15231525152915311533 TO 1541 1544 TO 1546155015511553 TO 155715631679 TO 16811685168716911694 1695 TO 169616981700 TO 17041706170817101713171617181719 1721 TO 17241726173017321734 TO 17421745 TO 1747175117521754 TO 1758 -

17641880 TO 18821886188818921895 TO 189718991901 TO 190519071909 191119141917191919201922 TO 19251927193119331935 TO 1943 1946 TO 1948195219531955 TO 195919652081 TO 20832087208920932096 2097 TO 209821002102 TO 21062108211021122115211821202121 2123 TO 21262128213221342136 TO 21442147 TO 2149215321542156 TO 2160 21662282 TO 22842288229022942297 TO 229923012303 TO 230723092311 231323162319232123222324 TO 23272329233323352337 TO 23452348 TO 2350235423552357 TO 23612367 PRIS YD 0.45 ZD 0.45
$135137139142143152164167168182203128012821284128712881297-$ 130913121313132713481481148314851488148914981510151315141528 154916821684168616891690169917111714171517291750188318851887 189018911900191219151916193019512084208620882091209221012113 21162117213121522285228722892292229323022314231723182332 2353 PRIS YD 0.6 ZD 0.3

131136141145146150158162165170173178180181184186196197201 202206212 TO 2152171276128112861290129112951303130513071310 1315131813231325132613291331134113421346134713511357 TO 1361 136314771482148714911492149615041506150815111516151915241526 152715301532154215431547154815521558 TO 15621564167816831688 169216931697170517071709171217171720172517271728173117331743 17441748174917531759 TO 176317651879188418891893189418981906 190819101913191819211926192819291932193419441945194919501954 1960 TO 1964196620802085209020942095209921072109211121142119 212221272129213021332135214521462150215121552161 TO 21652167 228122862291229522962300230823102312231523202323232823302331 -

23342336234623472351235223562362 TO 23662368 PRIS YD 0.45 ZD 0.35
218 TO 233235 TO 250252 TO 282284 TO 287289 TO 294297 TO 328 -
1263 TO 126512691271 TO 12751364 TO 14761565 TO 16771766 TO 18781967 -
1968 TO 20792168 TO 22802369 TO 2481 PRIS YD 0.3 ZD 0.4
CONSTANTS
MATERIAL CONCRETE ALL
SUPPORTS
1 TO 469 TO 3235 TO 4244 TO 4750 TO 55585961 TO 7477 TO 9799 FIXED
DEFINE WIND LOAD
TYPE 1
<! STAAD PRO GENERATED DATA DO NOT MODIFY !!!
ASCE-7-2002:PARAMS $50.000 \mathrm{kmph} 01100.000 \mathrm{ft} 0.000 \mathrm{ft} 0.000 \mathrm{ft} 1-$
$121.000 \mathrm{ft} 40.000 \mathrm{ft} 29.000 \mathrm{ft} 2.0000 .0100-$
00000.6331 .0001 .0000 .8500 -
0000.8740 .8000 .550
!> END GENERATED DATA BLOCK
INT 0.4788030 .4788030 .4788030 .4788030 .4788030 .4788030 .4788030 .478803 -
0.4788030 .4788030 .4788030 .4788030 .4788030 .4788030 .478803 HEIG 04.572 -
4.712684 .853354 .994035 .134715 .275385 .416065 .556745 .69742 -
5.838095 .978776 .119456 .260126 .4008

EXP 1.5 JOINT 1 TO 469 TO 3235 TO 4244 TO 4750 TO 55585961 TO 7477 -
78 TO 9799 TO 184186189 TO 718
LOAD 1 LOADTYPE Dead TITLE D L
SELFWEIGHT Y -1 LIST 131 TO 159161 TO 215217 TO 233235 TO 250252 TO 282 284 TO 287289 TO 294297 TO 3281263 TO 126512691271 TO 2481

LOAD 2 LOADTYPE Live TITLE F L

FLOOR LOAD
YRANGE 0 21 FLOAD -3.5 GY
LOAD 3 LOADTYPE Live TITLE L L
MEMBER LOAD
218 TO 233235 TO 250252 TO 282284 TO 287289 TO 294297 TO 300302 TO 320 -
322 TO 3281263 TO 126512691271 TO 12751364 TO 14401442 TO 14601462 -
1463 TO 14761565 TO 16411643 TO 16611663 TO 16771766 TO 18421844 TO 1862 -
1864 TO 18781967 TO 20432045 TO 20632065 TO 20792168 TO 2244 -
2246 TO 22642266 TO 22802369 TO 24452447 TO 24652467 TO 2480 -
2481 UNI GY -25
LOAD 4 LOADTYPE Wind TITLE W L
WIND LOAD X 1.5 TYPE 1 YR 021
WIND LOAD Z 1.5 TYPE 1 YR 021
LOAD COMB 5 Generated Indian Code Genral_Structures 1
11.521 .531 .5

LOAD COMB 6 Generated Indian Code Genral_Structures 2
11.221 .231 .241 .2

LOAD COMB 7 Generated Indian Code Genral_Structures 3
$11.221 .231 .24-1.2$
LOAD COMB 8 Generated Indian Code Genral_Structures 4
11.221 .231 .2

LOAD COMB 9 Generated Indian Code Genral_Structures 5
11.541 .5

LOAD COMB 10 Generated Indian Code Genral_Structures 6
$11.54-1.5$
LOAD COMB 11 Generated Indian Code Genral_Structures 7
11.5

LOAD COMB 12 Generated Indian Code Genral_Structures 8
10.9

PERFORM ANALYSIS PRINT ALL
START CONCRETE DESIGN
CODE INDIAN
UNIT MMS NEWTON
CLEAR 25 MEMB 218 TO 233235 TO 250252 TO 282284 TO 287289 TO 294 -
297 TO 300302 TO 320322 TO 3281263 TO 126512691271 TO 12751364 TO 1440 -
1442 TO 14601462 TO 14761565 TO 16411643 TO 16611663 TO 1677 -
1766 TO 18421844 TO 18621864 TO 18781967 TO 20432045 TO 2063-
2065 TO 20792168 TO 22442246 TO 22642266 TO 22802369 TO 2445 -
2447 TO 24652467 TO 2481
CLEAR 40 MEMB 131 TO 159161 TO 2152171276 TO 13631477 TO 1564 -
1678 TO 17651879 TO 19662080 TO 21672281 TO 2368
FC 30 ALL
FYMAIN 415 ALL
FYSEC 415 ALL
MAXMAIN 16 ALL
MAXSEC 10 ALL
MINMAIN 12 ALL
MINSEC 8 ALL
TRACK 2 ALL

DESIGN BEAM 218 TO 233235 TO 250252 TO 282284 TO 287289 TO 294 297 TO 3281263 TO 126512691271 TO 12751364 TO 14761565 TO 16771766 -

1767 TO 18781967 TO 20792168 TO 22802369 TO 2481
DESIGN COLUMN 131 TO 159161 TO 2152171276 TO 13631477 TO 1564 -
1678 TO 17651879 TO 19662080 TO 21672281 TO 2368
CONCRETE TAKE
END CONCRETE DESIGN
FINISH

Estimation:

Total volume of concrete $=$ 661.74 CU.METER

BAR DIA	
(in mm)	WEIGHT
(in Staad)	
-	142796.00
8	340.00
10	289856.00
16	172675.47
TOTAL= 605667.50	

Bending Moment:

Fig 9.2 a showing bending moments of all the beams

Shear:

Fig 9.2 b Showing Shear Force of all the beams

Conclusions:

1.Designing using Software's like Staad reduces lot of time in design work.
2.Details of each and every member can be obtained using staad pro.
3.All the List of failed beams can be Obtained and also Better Section is given by the software.
4.Accuracy is Improved by using software.

References:

1.Theory of Structures by ramamrutham for literature review on kani,s method
2.Theory of structures by B.C.punmia for literature on moment distribution method.
3.Reinforced concrete Structures by a.k. jain and b.c. punmia for design of beams, columns and slab.
4.Fundamentals of Reinforced concrete structure by N. c. Sinha .

Code Books

1.IS 456-2000 code book for design of beams, columns and slabs
2.SP-16 for design of columns.

