(1) $\lim _{n \rightarrow \infty}\left[\frac{1}{n^{2}} \sec ^{2} \frac{1}{n^{2}}+\frac{2}{n^{2}} \sec ^{2} \frac{4}{n^{2}}+\ldots \ldots \ldots .+\frac{1}{n} \sec ^{2} 1\right]$ is
(a) $\frac{1}{2} \sec 1$
(b) $\frac{1}{2} \operatorname{cosec} 1$
(c) $\tan 1$
(d) $\frac{1}{2} \tan 1$
[AIEEE 2005]
(2) The normal to the curve $\mathbf{x}=\mathbf{a}(\cos \theta+\theta \sin \theta), \mathbf{y}=\mathbf{a}(\sin \theta \quad \theta \cos \theta)$ at any point ' θ ' is such that
(a) it passes through the origin
(b) it makes angle $\frac{\pi}{2}+\theta$ with the X -axis
(c) it passes through ($a \frac{\pi}{2},-a$)
(d) it is at a constant distance from the o igin
[AIEEE 2005]
(3) A function is matched below agains an interval where it is supposed to be increasing. Which of the following pairs is correctly matched?

Interval
Fu ction
Interval

Function

(a) $(-\infty, \infty) \quad x^{3} \quad x^{2}+3 x+3$
(b) $[2, \infty)$
$2 x^{3}-3 x^{2}+12 x+6$
(c) $\left(-\infty, \frac{1}{3}\right) \quad 3 x^{3}-2 x^{2}+1$
(d) $(-\infty,-4)$
$x^{3}-6 x^{2}+6$
[AIEEE 2005]
(4) Let α and β be the distinct roots of the equation $a x^{2}+b x+c=0$. Then $\lim _{x \rightarrow \infty} \frac{1-\cos \left(a x^{2}+b x+c\right)}{(x-\alpha)^{2}}$ is equal to
(a) $\frac{a^{2}}{2}(\alpha-\beta)^{2}$
(b) 0
(c) $-\frac{a^{2}}{2}(\alpha-\beta)^{2}$
(d) $\frac{1}{2}(\alpha-\beta)^{2}$
[AIEEE 2005]
(5) Suppose $f(x)$ is differentiable at $x=1$ and $\lim _{h \rightarrow 0} \frac{1}{h} f(1+h)=5$, then f '(1) equals
(a) 3
(b) 4
(c) 5
(d) 6
[AIEEE 2005]
(6) Let f be differentiable for al x. If $f(1)=-2$ and $f(x) \geq 2$ for $x \in[1,6]$, then
(a) $f(6) \geq 8$
(b) $f(6)<8$
(c) $f(6)<5$
(d) $f(6)=5$
[ATEEE 2005]
(7) If f is a real valued differentiable function satisfying If(x)-f(y) $\leq(x \sim y)^{2}$, $x, y \in R$ and $f(0)=0$, then $f(1)$ equals
(a) -1
(b) 0
(c) 2
(d) 1
[AIEEE 2005]
(8) A spherical iron ball 10 cm in radius is coated with laye of ice of uniform thickness that melts at a rate of $50 \mathrm{~cm}^{3} / \mathrm{min}$. W en the thickness of ice is 5 cm , then the rate at which thickness of ice decreases in $\mathrm{cm} / \mathrm{min}$ is
(a) $\frac{1}{36 \pi}$
(b) $\frac{1}{18 \pi}$
(c) $\frac{1}{54 \pi}$
d) $\frac{5}{6 \pi}$
[AIEEE 2005]
(9) Let $f: R \rightarrow R$ be a differenti ble function having $f(2)=6, f(2)=\frac{1}{48}$. Then $\lim _{x \rightarrow 2} \int_{6}^{f(x)} \frac{4 t^{3}}{x-2} d t$ equas
(a) 24
(b) 36
(c) 12
(d) 18
[AIEEE 2005]
(10) If the e u tion $a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots \ldots+a_{1} x=0, a_{1} \neq 0, n \geq 2$ has a pos tive root $x=\alpha$, then the equation $n a_{n} x^{n-1}+(n-1) a_{n-1} x^{n-2}+\ldots+a_{1}=0$ has positive root which is
(a) greater than α
(b) smaller than α
(c) greater than or equal to α
(d) equal to α
[AIEEE 2005]
(11) If $\lim _{x \rightarrow \infty}\left(1+\frac{a}{x}+\frac{b}{x^{2}}\right)^{2 x}=e^{2}$, then the values of a and b are
(a) $a \in R, b \in R$
(b) $a=1, b \in R$
(c) $a \in R, b=2$
(d) $a=1, b=2$
[AIEEE 2004]
(12) Let $f(x)=\frac{1-\tan x}{4 x-\pi}, \quad x \neq \frac{\pi}{4}, \quad x \in\left[0, \frac{\pi}{2}\right]$. If $f(x)$ is continuous in $\left[0, \frac{\pi}{2}\right]$, then $f\left(\frac{\pi}{4}\right)$ is
(a) 1
(b) $\frac{1}{2}$
(c) $-\frac{1}{2}$
(d) -1

AIEEE 2004]
(13) If $x=e^{y+e^{y+\ldots . . \infty}}, x>0$, then $\frac{d y}{d x}$ is
(a) $\frac{x}{1+x}$
(b) $\frac{1}{x}$
(c) $\frac{1-x}{x}$
(d
$\frac{1+x}{x}$
[AIEEE 2004]
(14) A point on the parabola $y^{2}=18 x$ at which the ordinate increases at twice the rate of the abscissa is
(a) $(2,4)$
(b) (2,-4)
(c) $\left(-\frac{9}{8}, \frac{9}{2}\right)$
(d) $\left(\frac{9}{8}, \frac{9}{2}\right)$
[AIEEE 2004]
(15) A function $y=f(x)$ has a second order derivative $f "(x)=6(x-1)$. If its graph passes through the poin $(2,1)$ and at that point the tangent to the graph is $y=3 x-5$, then the unction is
(a) $(x-1)^{2}$
(b) $(x-1)^{3}$
(c) $(x+1)^{3}$
(d) $(x+1)^{2}$
[AIEEE 2004]
(16) he normal to the curve $\mathbf{x}=\mathbf{a}(1+\cos \theta), \mathbf{y}=\mathbf{a} \sin \theta$ at ' θ ' always passes through the fixed point
(a) (a, 0)
(b) (0, a)
(c) $(0,0)$
(d) (a, a)
[AIEEE 2004]
(17) If $2 a+3 b+6 c=0$, then at least one root of the equation $a x^{2}+b x+c=0$ lies in the interval
(a) $(0,1)$
(b) (1, 2)
(c) $(2,3)$
(d) $(1,3)$
[AIEEE 2004]
(18) Let $f(x)$ be a polynomial function of second degree. If $f(1)=f(-1)$ and a, b, c are in A. P., then $f^{\prime}(a), f^{\prime}(b)$ and $f^{\prime}(c)$ are in
(a) A. P.
(b)
G. P.
(c)
H. P.
(d) A. G. P.
[AIEEE 2003]
(19) $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\left[1-\tan \left(\frac{x}{2}\right)\right][1-\sin x]}{\left[1+\tan \left(\frac{x}{2}\right)\right][\pi-2 x]^{3}}=$
(a) 0
(b) ∞
(c) $\frac{1}{32}$
(d) $\frac{1}{8}$
[AIEEE 2003]
(20) If $\lim _{x \rightarrow 0} \frac{\log (3+x)-\log (3-x)}{x}=k$ then the value $f k$ is
(a) 0
(b) $-\frac{1}{3}$
(c)
(d) $-\frac{2}{3}$
[AIEEE 2003]
(21) If $f(x)=\frac{\log (1+a x)-\log (1-b x)}{x}$ is continuous at $x=0$, then the value of $f(0)$ is
(a) ab
(b) $a+b$
(c) $a-b$
(d) $\log a-\log b$
[AIEEE 2003]
(22) If $y=1 \quad \frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$, then the value of $\frac{d y}{d x}$ is
(a) 0
(b) 1
(c) x
(d) y
[AIEEE 2003]
(23) The value of $\lim _{n \rightarrow \infty} \frac{1+2^{4}+3^{4}+\ldots+n^{4}}{n^{5}}$ is
(a) zero
(b) $\frac{1}{4}$
(c) $\frac{1}{5}$
(d) $\frac{1}{30}$
[AIEEE 2003]
(24) If $f: R \rightarrow R$ satisfies $f(x+y)=f(x)+f(y)$, for all $x, y \in R$ and $f(1)=7$, then the value of $\sum_{r=1}^{n} f^{\prime}(r)$ is
(a) $\frac{7 n}{2}$
(b) $7 n(n+1)$
(c) $\frac{7(n+1)}{2}$
(d) $\frac{7 n(n+1)}{2}$
[AIEEE 2003]
(25) The real number x when added to its inverse gives the min mum value of the sum at x equal to
(a) 2
(b) - 2
(c) 1
(d) - 1
[AIEEE 2003]
(26) If the function $f(x)=2 x^{3}-9 a x^{2}+12 a^{2} x+1$ where $a>0$, attains its maximum and minimum at p and q respectively such that $p^{2}=q$, then a equals
(a) 3
(b) 1
(c) 2
[AIEEE 2003]
(27) If $f(x)=x^{n}$, then the yal ef $f(1)-\frac{f^{\prime}(1)}{1!}+\frac{f^{\prime \prime}(1)}{2!}+\frac{f^{\prime \prime \prime}(1)}{3!}+\ldots+\frac{(-1)^{n} f^{n}(1)}{n!}$ is
(a) 2^{n}
(b) 2^{n}
(c) 1
(d) 0
[AIEEE 2003]
(28) If $x=t^{2}+t$ and $y=\sin \left(\frac{\pi}{2} t\right)+\cos \left(\frac{\pi}{2} t\right)$, then at $t=1$, the value of $\frac{d y}{d x}$ is
(a)
$\frac{\pi}{2}$
(b) $-\frac{\pi}{6}$
(c) $\frac{\pi}{3}$
(d) $-\frac{\pi}{4}$
[AIEEE 2002]
(29) If $x=3 \cos \theta-2 \cos ^{3} \theta$ and $y=3 \sin \theta-2 \sin ^{3} \theta$, then the value of $\frac{d y}{d x}$ is
(a) $\boldsymbol{\operatorname { s i n }} \theta$
(b) $\boldsymbol{\operatorname { c o s }} \theta$
(c) $\boldsymbol{\operatorname { t a n }} \theta$
(d) $\cot \theta$
[AIEEE 2002]
(30) Let $f(a)=g(a)=k$ and their nth derivatives $f^{n}(a), g^{n}(a)$ exist and are not equal for some n. Further if $\lim _{x \rightarrow a} \frac{f(a) g(x)-f(a)-g(a) f(x)+g(a)}{g(x)-f(x)}=4$, then the value of k is
(a) 4
(b) 2
(c) 1
(d) 0
[AIEEE 2002]
(31) The value of $\lim _{x \rightarrow 0} \frac{(1-\cos 2 x) \sin 5 x}{x^{2} \sin 3 x}$ is
(a) $\frac{10}{3}$
(b) $\frac{3}{10}$
(c) $\frac{6}{5}$
(d) $\frac{5}{6}$
[AIEEE 2002]
(32) The value of $\lim _{\alpha \rightarrow \beta}\left[\frac{\sin ^{2} \alpha-\sin ^{2} \beta}{\alpha^{2}-\beta^{2}}\right]$ is
(a) 0
(b) 1
(c) $\frac{\sin \beta}{\beta}$
(d) $\frac{\sin 2 \beta}{2 \beta}$
[AIEEE 2002]
(33) The value of $\lim _{x \rightarrow 0} \frac{\sqrt{1-\cos 2 x}}{x}$ is
(a) 0
(b) 1
(c) $\sqrt{2}$
(d) does not exist
[AIEEE 2002]
(34) $f(x)=2 x^{3}-3 x^{2}-12 x+5$ on $[-2,4]$, then relative maximum occurs at $x=$
(a) - 2
(b) -1
(c) 2
(d) 4
[AIEEE 2002]
(35) If $f(x)=\left\{\begin{array}{c}x e^{-\left(\frac{1}{|x|}+\frac{1}{x}\right)}, \quad x \neq 0, \\ 0, \\ x=0\end{array}\right.$ then $f(x)$ is
(a) discontinuous everywhere
(b) continuous as well as differentiable for all x
(c) neither differentiable nor continuous at $x=0$
(d) continuous at all x but not differentiable at $x=0$
[AIEEE 2002]
(36) If y is a twice differentiable function and $x \cos y+y \cos x=\pi$, then y " $(0)=$
(a) π
(b) $-\pi$
(c) 0
(d) 1
[IIT 2005]
(37) $f(x)=||x|-1|$ is not differentiable at $x=$
(a) $0, \pm 1$
(b) ± 1
(c) 0
(d) 1
[IIT 2005]
(38) If f is a differentiable function such that $f: R \rightarrow R \quad f\left(\frac{1}{n}\right)=0 \forall n \in I, n \geq 1$, then
(a) $f(x)=0 \quad \forall x \in[0,1]$
(b) $f(0)=0$, but $f(0)$ may or may not be 0
(c) $f(0)=0=f^{\prime}(0)$
(d) $|f(x)| \leq 1 \forall x \in[0,1]$
[IIT 2005]
(39) f is a twice differentiable polynomial function of x such that $f(1)=1, f(2)=4$ and $f(3)=9$, then
(a) $f "(x)=2, \forall x \in R$
(b) f " $(x)=f^{\prime}(x)=5, x \in[1,3]$
(c) $f "(x)=2$ for only x
(d) $f "(x)=3, x \in(1,3)$
[IIT 2005]
[Note: This question should have been better put as 'polynomial function of degree two rather than wice differentiable function'.]
(40) S is a set of polynomial of degree less than or equal to $2, f(0)=0, f(1)=1$, $f^{\prime}(x) \quad 0, \forall x \in[0,1]$, then set $S=$
(a $a x+(1-a) x^{2}, a \in R$
(b) $a x+(1-a) x^{2}, 0<a<2$
) $a x+(1-a) x^{2}, 0<a<\infty \quad$ (d) ϕ
[IIT 2005]
(41) Let y be a function of x, such that $\log (x+y)=2 x y$, then $y^{\prime}(0)$ is
(a) 0
(b) 1
(c) $\frac{1}{2}$
(d) $\frac{3}{2}$
[IIT 2004]
(42) Let $f(x)=x^{\alpha} \log x$ for $x>$ and $f(0)=0$ follows Rolle's theorem for $x \in[0,1]$, then α is
(a) - 2
(b) - 1
(c) 0
(d) $\frac{1}{2}$
[IIT 2004]
(43) If $f(x)$ is strictly increasing and differentiable, then $\lim _{x \rightarrow 0} \frac{f\left(x^{2}\right)-f(x)}{f(x)-f(0)}$ is
(a) 1
(b) - 1
(c) 0
(d) 2
[IIT 2004]
(44) Let $f(x)=x^{3}+b x^{2}+c x+d, \quad 0<b^{2}<c$, then $f(x)$
(a) is strictly increasing
(b) has local maxima
(c) has local minima
(d) is a bounded curve
[IIT 2004]
(45) If $f(x)$ is a differentiable function, f '(1) $=1$, (2) 6 , where f '(c) means the derivative of the function at $x=c$, then

$$
\lim _{h \rightarrow 0} \frac{f\left(2+2 h+h^{2}\right)-f(2)}{f\left(1+h-h^{2}\right)-f(1)}
$$

(a) does not exist
(b)
(c) 3
(d) $\frac{3}{2}$
[IIT 2003]
(46) If $\lim _{x \rightarrow 0} \frac{\sin n x[(a-n) n x-\tan x]}{x}=0$, where n is a non-zero positive integer, then a is equal to
(a) $\frac{n+1}{n}$
b) n^{2}
(c) $\frac{1}{n}$
(d) $n+\frac{1}{n}$
[IIT 2003]
(47) Which functi n does not obey Mean Value Theorem in [0, 1]?
(a.) $f(x)= \begin{cases}\frac{1}{2}-x, & x<\frac{1}{2} \\ \left(\frac{1}{2}-x\right)^{2}, & x \geq \frac{1}{2}\end{cases}$
(b) $f(x)= \begin{cases}\frac{\sin x}{x}, & x \neq 0 \\ 1, & x=0\end{cases}$
(c) $f(x)=x|x|$
(d) $f(x)=|x|$
[IIT 2003]
(48) The domain of the derivative of the function $f(x)=\left\{\begin{array}{ll}\tan ^{-1} x, & \text { if }|x| \leq 1 \\ \frac{1}{2}(|x|-1), & \text { if }|x|>1\end{array}\right.$ is
(a) $R-\{0\}$
(b) $R-\{1\}$
(c) $R-\{-1\}$
(d) $R-\{-1,1\}$
[IIT 2002]
(49) The integer n for which $\lim _{x \rightarrow 0} \frac{(\cos x-1)\left(\cos x-e^{x}\right)}{x^{n}}$ is a finite non-zero number is
(a) 1
(b) 2
(c) 3
(d) 4
[IT 2002]
(50) If $f: R \rightarrow R$ be such that $f(1)=3$ and $f^{\prime}(1)=6$, then $\lim _{x \rightarrow 0}\left(\frac{f(1+x)}{f(1)}\right)^{\frac{1}{x}}$ equals
(a) 1
(b) $e^{\frac{1}{2}}$
(c) e^{2}
(d) e^{3}
[IIT 2002]
(51) The point (s) on the curve $y^{3}+3 x^{2}=12 y$ wh re the tangent is vertical, is / (are)
(a) $\left(\pm \frac{4}{\sqrt{3}},-2\right)$
(b) $\left(\pm \sqrt{\frac{11}{3}}\right.$,
(c) $(0,0)$
(d) $\left(\pm \frac{4}{\sqrt{3}}, 2\right)$
[IIT 2002]
(52) Let $f: R \rightarrow R$ be a functio defined by $f(x)=\left\{x, x^{3}\right\}$. The set of all points where $f(x)$ is not differentiable is
(a) $\{-1,1\} \quad(-1,0\}$
(c) $\{0,1\}$
(d) $\{-1,0,1\}$
[IIT 2001]
(53) The left hand derivative of $f(x)=[x] \sin (\pi x)$ at $x=k$, where k is an integer, is
(a) $(-)^{k}(k-1) \pi$
(b) $(-1)^{k-1}(k-1) \pi$
(c) $(-)^{k} k \pi$
(d) $(-1)^{k-1} k \pi$
[IIT 2001]

54 The left hand derivative of $f(x)=[x] \sin (\pi x)$ at $x=k$, where k is an integer, is
(a) $(-1)^{k}(k-1) \pi$
(b) $(-1)^{k-1}(k-1) \pi$
(c) (-1 $)^{k} k \pi$
(d) (-1 $)^{k-1} k \pi$
[IIT 2001]
(55) $\lim _{x \rightarrow 0} \frac{\sin \left(\pi \cos ^{2} x\right)}{x^{2}} \quad$ equals
(a) $-\pi$
(b) π
(c) $\pi / 2$
(d) 1
[IIT 2001]
(56) If $f(x)=x e^{x(1-x)}$, then $f(x)$ is
(a) increasing on $\left[-\frac{1}{2}, 1\right]$
(b) decreasing on R
(c) increasing on R
(d) decreasing on $\left[-\frac{1}{2}, 1\right]$
[IIT 2001]
(57) Which of the following functions is differentiable at $x=0$?
(a) $\cos (|x|)+|x|$
(b) $\cos (|x|)-|x|$
(c) $\sin (|x|)+|x|$
(d) $\sin (|x|)-|x|$
[IIT 2001]
(58) If $x^{2}+y^{2}=1$, then
(a) $y y^{\prime \prime}-2\left(y^{\prime}\right)^{2}+1=0$
(b) $\mathrm{yy}{ }^{\prime \prime}+\left(y^{\prime}\right)^{2}+1=0$
(c) $\mathrm{yy}{ }^{\prime \prime}+\left(\mathrm{y}^{\prime}\right)^{2}-1=0$
(d) $y y^{\prime \prime}+2\left(y^{\prime}\right)^{2}+1=0$
[IIT 2000]
(59) For $x \in R, \lim _{x \rightarrow \infty}\left(\frac{x-3}{x+2}\right)^{x}=$
(a) e
(b) e^{-1}
(c)
(d) e^{5}
[IIT 2000]
(60) Consider the fo owing statements in S and R:

S: Both $\sin x$ and $\cos x$ are decreasing functions in the interval $\left(\frac{\pi}{2}, \pi\right)$
R: It a differentiable function decreases in an interval (a, b), then its derivative also decreases in (a, b).
Which of the following is true?
(a) Both S and R are wrong.
(b) Both S and R are correct, but R is not the correct explanation of S.
(c) S is correct and R is correct explanation of S.
(d) S is correct and R is wrong.
[IIT 2000]
(61) If the normal to the curve $y=f(x)$ at the point (3,4) makes an angle $\frac{3 \pi}{4}$ with the positive X-axis, then $f^{\prime}(3)=$
(a) - 1
(b) $-3 / 4$
(c) $4 / 3$
(d) 1
[IIT 2000]
(62) If $f(x)=\left\{\begin{array}{cc}|x| & \text { for } 0<|x| \leq 2 \\ 1 & \text { for } \\ x=0\end{array}\right.$, then at $x=0, f$ has
(a) a local maximum
(b) no local maximum
(c) a local minimum
(d) no extremum
[1T 2000]
(63) For all $x \in(0,1)$, which of the following is true?
(a) $\mathrm{e}^{\mathrm{x}}<1+\mathrm{x}$
(b) $\log _{e}(1+x)<x$
(c) $\sin x>x$
(d) $\log _{e} x>x$
[IIT 2000]
(64) The function $f(x)=\sin ^{4} x+\cos ^{4} x$ increases
(a) $0<x<\frac{\pi}{8}$
(b) $\frac{\pi}{4}<x<\frac{3 \pi}{8}$
(c) $\frac{3 \pi}{8}<x<\frac{5 \pi}{8}$
(d) $\frac{5 \pi}{8}<x<$
[IIT 1999]
(65) The function $f(x)=[x]^{2}-\left[x^{2}\right]$ where $[y]$ is the greatest integer less than or equal to y, is discontinuous at
(a) all integers
(b) all integers except 0 and 1
(c) all integers ex por
(d) all integers except 1
[IIT 1999]
(66) The function $f(x)=\left(x^{2}-1\right)\left|x^{2}-3 x+2\right|+\cos (|x|)$ is NOT differentiable at
(a) - 1
b) 0
(c) 1
(d) 2
[IIT 1999]
(67) $\lim _{x \rightarrow 0} \frac{x \tan 2 x-2 x \tan x}{(1-\cos 2 x)^{2}}=$
(a) 2
(b) - 2
(c) $\frac{1}{2}$
(d) $-\frac{1}{2}$
[IIT 1999]
(68) The function $f(x)=\int_{-1}^{x} t\left(e^{t}-1\right)(t-1)(t-2)^{3}(t-3)^{5} d t$ has a local minimum at $x=$
(a) 0
(b) 1
(c) 2
(d) 3
[IIT 1999]
(69) $\lim _{x \rightarrow 1} \frac{\sqrt{1-\cos 2(x-1)}}{x-1}$
$\begin{array}{lll}\text { (a) exists and is equal to } \sqrt{2} & \text { (b) exists and is equal to }-\sqrt{2}\end{array}$
(c) does not exist because $\mathrm{x}-1 \rightarrow 0$
(d) does not exist because left hand limit \neq right hand limit
[IIT 1998]
(70) If $\int_{0}^{x} f(t) d t=x+\int_{1}^{x} t f(t) d t$, then the value of $f(1)$ is
(a) $\frac{1}{2}$
(b) 0
(c) 1
(d) $-\frac{1}{2}$
[IIT 1998]
(71) Let $h(x)=\min \left[x, x^{2}\right]$, for every real number x, then
(a) h is continuous for all x
(b) h is differentiable for all x
(c) $h^{\prime}(x)=1$ for all $x>1$
(d) h is not differentiable at two
values of x
[IIT 1998]
(72) If $h(x)=f(x)-[f(x)]^{2}$ for every real number x, then
(a) h is increasing whenev $r f$ is increasing
(b) h is increasing wh ever f is decreasing
(c) h is decreasing whenever f is decreasing
(d) nothing ca be said in general
[IIT 1998]
(73) If $f(x)=\frac{x}{\sin x}$ and $g(x)=\frac{x}{\tan x}$, where $0<x \leq 1$, then in this interval
(both $f(x)$ and $g(x)$ are increasing functions
(b) both $f(x)$ and $g(x)$ are decreasing functions
(c) $f(x)$ is an increasing function
(d) $g(x)$ is an increasing function
[IIT 1997]
(74) $\lim _{n \rightarrow p} \frac{1}{n} \sum_{1}^{2 n} \frac{r}{\sqrt{n^{2}+r^{2}}}$ equals
(a) $1+\sqrt{5}$
(b) $-1+\sqrt{5}$
(c) $-1+\sqrt{2}$
(d) $1+\sqrt{2}$
[IIT 1997]
(75) If $f(x)=\left|\begin{array}{lll}x^{3} & \sin x & \cos x \\ 6 & -1 & 0 \\ p & p^{2} & p^{3}\end{array}\right|,(p$ is a constant $)$, then $\frac{d^{3}}{d x^{3}}[f(x)]$ at $x=0$ is
(a) p
(b) $p+p^{2}$
(c) $p+p^{3}$
(d) independent of p
[IIT 1997]
(76) The function $f(x)=[x] \cos \left[\frac{2 x-1}{2}\right] \pi$, where $[$.$] denote the greatest integer$ function, is discontinuous at
(a) all x
(b) all integer points
(c) no x
(d) x which is not an integer
[IIT 1995]
(77) If $f(x)$ is defined and continuous for all $x>0$ and satisfy $f\left(\frac{x}{y}\right)=f(x)-f(y)$ for all x, y and $f(e)=1$, then
(a) $f(x)$ is bounded
(b) $\left(\frac{1}{x}\right) \rightarrow 0$ as $x \rightarrow 0$
(c) $x f(x) \rightarrow 1$ as $x \rightarrow 0$
(d) $f(x)=\log x$
[IIT 1995]
(78) On the interval [0,$]^{2}$ he function $x^{25}(1-x)^{75}$ attains maximum value at the point
(a) 0
(b) $\frac{1}{4}$
(c) $\frac{1}{2}$
(d) $\frac{1}{3}$
[IIT 1995]
(79) Th func ion $f(x)=|p x-q|+r|x|, \quad x \in(-\infty, \infty)$ where $p>0, q>0, r>0$, assumes its minimum value only at one point if
(a) $p \neq q$
(b) $r \neq q$
(c) $r \neq p$
(d) $p=q=r$
[IIT 1995]
(80) The function $f(x)=\frac{\ln (\pi+x)}{\ln (e+x)}$ is
(a) increasing on $[0, \infty$)
(b) decreasing on $[0, \infty$)
(c) increasing on $\left[0, \frac{\pi}{e}\right]$ and decreasing on $\left[\frac{\pi}{e}, \infty\right)$
(d) decreasing on $\left[0, \frac{\pi}{e}\right]$ and increasing on $\left[\frac{\pi}{e}, \infty\right)$
[IIT 1995]
(81) The function $f(x)=\max \{(1-x),(1+x), 2\}, x \in(-\infty, \infty)$, is
(a) continuous at all points (b) differentiable at all points
(c) differentiable at all points except at $x=1$ and $x=-1$
(d) continuous at all points except at $x=1$ and $x=-1$
[IIT 1995]
(82) Let [.] denote the greatest integer function and $f(x)=\left[\tan ^{2} x\right]$ Then,
(a) $\lim _{x \rightarrow 0} f(x)$ does not exist
(b) $f(x)$ is contin ous $t x=0$
(c) $f(x)$ is not differentiable at $x=0$
(d) f'(0)
[IIT 1993]
(83) If $f(x)=\left\{\begin{array}{ll}3 x^{2}+12 x-1, & -1 \leq x \leq 2 \\ 37-x, & 2<x \leq 3\end{array}\right.$ hen
(a) $f(x)$ is increasing on [-1, 2]
(b) $f(x)$ is continuous on $[-1,3]$
(c) $f(x)$ is maximum at $x=2$
(d f'(2) does not exist
[IIT 1993]
(84) The value of $\lim _{x \rightarrow 0} \frac{\sqrt{\frac{1}{2}(1, \cos 2 x)}}{x}$ is
(a) 1
(b) $-1 \leadsto 0$
(d) none of these
[IIT 1991]
(85) The follow ing functions are continuous on $(0, \pi)$.
(a) $\tan x$

$$
\begin{array}{ll}
1, & 0<x \leq \frac{3 \pi}{4} \\
2 \sin \frac{2 x}{9}, & \frac{3 \pi}{4}<x \leq \pi
\end{array}
$$

(b) $\int_{0}^{\pi} t \sin \frac{1}{t} d t$
(d) $x \boldsymbol{\operatorname { s i n }} \mathrm{x}$,

$$
0<x \leq \frac{\pi}{2}
$$

$$
\frac{\pi}{2} \sin (\pi+x), \quad \frac{\pi}{2}<x<\pi
$$

[IIT 1991]
(86) If $f(x)=\frac{x}{2}-1$, then, on the interval $[0, \pi]$, $\tan [f(x)]$ and (a) $\frac{1}{f(x)}$ are both continuous (b) $\frac{1}{f(x)}$ are both discontinuous (c) $f^{-1}(x)$ are both continuous
(d) $f^{-1}(x)$ are both discontinuous
[IIT 1989]
(87) If $y^{2}=P(x)$, a polynomial of degree 3 , then $2 \frac{d}{d x}\left(y^{3} \frac{d^{2} y}{d x^{2}}\right)$ equals
(a) $P^{\prime \prime \prime}(x)+P^{\prime}(x)$
(b) $P^{\prime \prime}(x) P^{\prime \prime \prime}(x)$
(c) $P(x) P$ " (x)
(d) a constant
[ITT 1988]
(88) The function $f(x)=\left\{\begin{array}{ll}x-3 & x \geq 1 \\ \frac{x^{2}}{4}-\frac{3 x}{2}+\frac{13}{4} & x<1\end{array}\right.$ is
(a) continuous at $x=1$
(b) differentiable at $x=1$
(c) continuous at $x=3$
(d) differentiable at $x=3$
[IIT 1988]
(89) The set of all points where the function $f(x)=\frac{x}{|x|}$ is differentiable is
(a) $(-\infty, \infty)$
(b) $(0, \infty)$
(C) $(\infty, 0) \cup(0, \infty)$
(d) $(0, \infty)$
(e) none of these
[IIT 1987]
(90) Let f and g be increasing nd decreasing functions respectively from ($0, \infty$) to $(0, \infty)$. Let $h(x)=f[g(x)]$ If $h(0)=0, h(x)-h(1)$ is
(a) always zero
(b) always negative
(c) always positive
(d) strictly increasing () none of these
[IIT 1987]
(91) Let $P(x)=a_{0}+a_{1} x^{2}+a_{2} x^{4}+\ldots+a_{n} x^{2 n}$ be a polynomial in a real variable x with $0<a_{0}<a<a_{2}<\ldots<a_{n}$. The function $P(x)$ has
(a) neit er a maximum nor a minimum (b) only one maximum
(c) only one minimum (d) only one maximum and only one minimum
(e) none of these
[IIT 1986]
(92) The function $f(x)=1+|\sin x|$ is
(a) continuous nowhere (b) continuous everywhere (c) differentiable
(d) not differentiable at $x=0$ (e) not differentiable at infinite number of points
[IIT 1986]
(93) Let [x] denote the greatest integer less than or equal to x. If $f(x)=[x \sin \pi x]$, then $f(x)$ is
(a) continuous at $x=0$
(b) continuous in ($-1,0$)
(c) differentiable at $\mathrm{x}=1$
(d) differentiable in $(-1,1$
(e) none of these
[IIT 1986]
(94) If $f(x)=\frac{\sin [x]}{[x]}, \quad[x] \neq 0$

$$
=0, \quad[x]=0
$$

where x] denotes the greatest integer less than or equal to x, then $\lim _{x \rightarrow 0} f(x)$ equals
(a) 1
(b) 0
(c) - 1
(d) none of these
[IIT 1985]
(95) If $f(x)=x(\sqrt{x}-\sqrt{x+1})$, then
(a) $f(x)$ is continuous but not differentiable at $x=0$
(b) $f(x)$ is differentiable at $x=0$
(c) $f(x)$ is not differentiable at $x=0 \quad$ (d) none of these
[IIT 1985]
(96) $\lim _{n \rightarrow \infty}\left\{\frac{1}{1-n^{2}}+\frac{2}{1-n^{2}}+\ldots+\frac{n}{1-n^{2}}\right\}$ is qual to
(a) 0
(b) $-\frac{1}{2}$
(c) $\frac{1}{2}$
(d) none of these
[lIT 1984]
(97) If $x+|y|=2 y$, then y as a function of x is
(a) defined for all real $x \quad$ (b) continuous at $x=0$
(c) differentiable for a
(d) such that $\frac{d y}{d x}=\frac{1}{3}$ for $x<0$
[IIT 1984]
(98) If $G(x)=-\sqrt{25} x^{2}$, then $\lim _{x \rightarrow 1} \frac{G(x)-G(1)}{x-1}$ has the value
(a) $\frac{1}{24}$
(b) $\frac{1}{5}$
(c) $-\sqrt{24}$
(d) none of these
[IIT 1983]
(99) If $f(a)=2, f^{\prime}(a)=1, g(a)=-1, g^{\prime}(a)=2$, then the value of $\lim _{x \rightarrow a} \frac{g(x) f(a)-g(a) f(x)}{x-a}$ is
(a) -5
(b) $\frac{1}{5}$
(c) 5
(d) none of these
[IIT 1983]
(100) The function $f(x)=\frac{\ln (1+a x)-\ln (1-b x)}{x}$ is not defined at $x=0$. The value which should be assigned to f at $x=0$, so that it is continuous at $x=0$, is
(a) $a-b$
(b) $a+b$
(c) $\ln a+\ln b$
(d) none of these
[IIT 1983]
(101) The normal to the curve $x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$ at any point ' θ ' is such that
(a) it makes a constant angle with the X-axis (b) it passes through the origin (c) it is at a constant distance from the origin (d) none of these
[IIT 1983]
(102) If $y=a \ln x+b x^{2}+x$ has its extremum values at $x=-1$ and $x=2$ then
(a) $a=2, b=-1$
(b) $a=2, b=-\frac{1}{2}$
(c) $a=-2, b=\frac{1}{2}$
(d) none of these
[IIT 1983]
(103) There exists a function $f(x)$ satisfying $f(0)=1, f \prime(0)=-1, f(x)>0$ for all x and
(a) $f "(x)>0$ for all x
(b) $<f^{\prime \prime}(x)<0$ for all x
(c) $-2 \leq f "(x) \leq-1$ for all
d) $"(x)<-2$ for all x
[IIT 1982]
(104) For a real number y, let $[y]$ denote the greatest integer less than or equal to y. Then the function $f(x)=\frac{\tan [\pi(x-\pi)]}{1+[x]^{2}}$ is
(a) discontinuous a some x
(b) continuous at all x, but the derivative f " (x) does not exist for some x
(c) $f^{\prime}(x)$ exists for all x, but the derivative $f^{\prime \prime}(x)$ does not exist for some x
(d) $f(x$ exists for all x
[IIT 1981]
(105 If $f(x)=\sqrt{\frac{x-\sin x}{x+\cos ^{2} x}}$, then $\lim _{x \rightarrow \infty} f(x)$ is
(a) 0
(b) ∞
(c) 1
(d) none of these
[IIT 1979]

Answers

