(1) Three houses are available in a locality. Three persons apply for the houses. Each applies for one house without consulting others. The probability that all the three apply for the same house is
(a) $\frac{2}{9}$
(b) $\frac{1}{9}$
(c) $\frac{8}{9}$
(d) $\frac{7}{9}$

AIEEE 2005]
(2) A random variable X has Poisson distribution with mean 2. Then $P(>1.5$) equals
(a) $\frac{2}{e^{2}}$
(b) 0
(c) $1-\frac{3}{e^{2}}$
(d) $\frac{3}{e^{2}}$
[AIEEE 2005]
(3) Let A and B be two events such that $P(\overline{A \cup B})=\frac{1}{6}, P(A \cap B)=\frac{1}{4}$ and $P(\bar{A})=\frac{1}{4}$, where \bar{A} stands for comp ement of event A. Then events A and B are
(a) equally likely and mutually exc usive
(b) equally likely but not independent
(c) independent but not equally ikely
(d) mutually exclusive and ind pendent
[AIEEE 2005]
(4) Let $x_{1}, x_{2}, \ldots .$. , x_{n} be n observations such that $\sum x_{i}{ }^{2}=400$ and $\sum x_{i}=80$. Then a possible value of n among the following is
(a) 15
(b) 18
(c) 9
(d) 12
[AIEEE 2005]
(5) P ob bility that A speaks truth is $\frac{4}{5}$ while this probability for B is $\frac{3}{4}$. The probability that they contradict each other when asked to speak on a fact is
(a) $\frac{3}{20}$
(b) $\frac{1}{5}$
(c) $\frac{7}{20}$
(d) $\frac{4}{5}$
[AIEEE 2004]
(6) The mean and variance of a random variable x having a binomial distribution are 4 and 2 respectively. Then $P(x=1)$ is
(a) $\frac{37}{256}$
(b) $\frac{219}{256}$
(c) $\frac{128}{256}$
(d) $\frac{28}{256}$
[AIEEE 2004]
(7) A random variable X has the following probability distribution.

$\mathrm{X}:$	1	2	3	4	5	6	7	8
$\mathrm{p}(\mathrm{X}):$	0.15	0.23	0.12	0.10	0.20	0.08	0.07	0.05

For the events $E=\{X$ is a prime number $\}$ and $F=\{X<4\}$, the probabil $P(E \cup F)$ is
(a) 0.87
(b) 0.77
(c) 0.35
(d) 0.50
[AIEEE 2004]
(8) The events A, B, C are mutually exclusive events such that $P(A)=\frac{3 x+1}{3}$, $P(B)=\frac{1-x}{4}$ and $P(C)=\frac{1-2 x}{2}$. The set of possible values of x are in the interval
(a) $\left[\frac{1}{3}, \frac{1}{2}\right]$
(b) $\left[\frac{1}{3}, \frac{2}{3}\right]$
(c)
$\left[\frac{1}{3}, \frac{13}{3}\right]$
(d) $[0,1]$
[AIEEE 2003]
(9) Five horses are in a race. Mr A elects two of the horses at random and bets on them. The probability that Mr A selected the winning horse is
(a) $\frac{4}{5}$
(b)
$\frac{3}{5}$
(c $\frac{1}{5}$
(d) $\frac{2}{5}$
[AIEEE 2003]
(10) The mean and variance of a random variable X having a binomial distribution are 4 and 2 respective y then, $P(X=1)$ is
(a)
(b) $\frac{1}{16}$
(c) $\frac{1}{8}$
(d) $\frac{1}{4}$
[AIEEE 2003]
(11) The probabilities of a student getting Ist, IInd and IIIrd division in an examination are respectively $\frac{1}{10}, \frac{3}{5}$ and $\frac{1}{4}$. The probability, that a student fails in the examination is
(a) $\frac{197}{200}$
(b) $\frac{27}{100}$
(c) $\frac{83}{100}$
(d) $\frac{33}{200}$
[AIEEE 2002]
(12) A bag contains 4 red and 3 black balls. A second bag contains 2 red and 4 black balls. One bag is selected at random. If from the selected bag one ball is drawn, then the probability that the ball drawn is red is
(a) $\frac{1}{42}$
(b) $\frac{3}{41}$
(c) $\frac{9}{42}$
(d) $\frac{19}{42}$
[AIEEE 2002]
(13) A box contains 6 nails and 10 nuts. Half of the nails and half of the nuts are rusted. If one item is chosen at random, then the probability that it is rusted or a nail is
(a) $\frac{3}{16}$
(b) $\frac{5}{16}$
(c) $\frac{11}{16}$
(d) $\frac{14}{16}$
[AIEEE 2002]
(14) A bag contains 5 brown and 4 white socks. A man pulls out two socks. The probability that both the socks are of the same colour is
(a) $\frac{9}{108}$
(b) $\frac{18}{108}$
(c) $\frac{36}{108}$
(d) $\frac{48}{108}$
[AIEEE 2002]
(15) A 6 -faced fair dice is rolled repeatedly till 1 appears for the first time. The probability that the dice is rolled for even number of tim s is
(a) $\frac{1}{6}$
(b) $\frac{5}{36}$
(c) $\frac{6}{11}$
d) $\frac{5}{11}$
[IIT 2005]
(16) Three distinct numbers are chos n randomly from first 100 natural numbers, then the probability that all are divisible by 2 and 3 both is
(a) $\frac{4}{33}$
$\begin{array}{ll}\text { (b) } \frac{4}{35} & \text { (c) } \frac{4}{25}\end{array}$
(d) $\frac{4}{1155}$
[IIT 2004]
(17) Two numbers are chosen from \{1, 2, 3, 4, 5, 6$\}$ one after another without replacem nit Find the probability that the smaller of the two is less than 4.
$\frac{4}{5}$
(b) $\frac{1}{15}$
(c) $\frac{1}{5}$
(d) $\frac{14}{15}$
[IIT 2003]
18) If $P(B)=\frac{3}{4}, P(\bar{A} \cap B \cap \bar{C})=\frac{1}{3}$ and $P\left(A \cap B \cap \bar{C}=\frac{1}{3}\right.$, then $P(B \cap C)$ is
(a) $\frac{1}{12}$
(b) $\frac{3}{4}$
(c) $\frac{5}{12}$
(d) $\frac{23}{36}$
[IIT 2003]
(19) If the integers m and n are chosen at random between 1 and 100 , then the probability that the number of the form $7^{\mathrm{m}}+7^{\mathrm{n}}$ is divisible by 5 equals
(a) $\frac{1}{4}$
(b) $\frac{1}{7}$
(c) $\frac{1}{8}$
(d) $\frac{1}{49}$
[IIT 1999]

(Answers at the end of all questions)

(20) The probabilities that a student passes in Mathematics, Physics and Chemistry are m, p and c respectively. Of these subjects, the student has a 75% chance of passing in at least one, a 50% chance of passing in at least two and 40% chance of passing in exactly two. Which of the following relations are true?
(a) $p+m+c=\frac{19}{20}$
(b) $p+m+c=\frac{27}{20}$
(c) $\mathrm{pmc}=\frac{1}{10}$
(d) $\mathrm{pms}=\frac{1}{4}$
[IIT 1999]
(21) If from each of the three boxes containing 3 white and black, 2 white and 2 black, 1 white and 3 black balls, one ball is drawn trandom, then the probability that 2 white and 1 black ball will be drawn is
(a) $\frac{13}{32}$
(b) $\frac{1}{4}$
(c) $\frac{1}{32}$
(d)
[IIT 1998]
(22) A fair coin is tossed repeatedly. If il appears on first four tosses, then the probability of head appearing on fifth toss equals
(a) $\frac{1}{2}$
(b) $\frac{1}{32}$
31
(d) $\frac{1}{5}$
[IIT 1998]
(23) Seven white balls and hree black balls are randomly placed in a row. The probability that no two bl ck balls are placed adjacently equals
(a)
(b) $\frac{7}{15}$
(c) $\frac{2}{15}$
(d) $\frac{1}{3}$
[IIT 1998]
(24) P and F are events with $P(E) \leq P(F)$ and $P(E \cap F)>0$, then
(a) occurrence of $E \Rightarrow$ occurrence of F
(b) occurrence of $F \Rightarrow$ occurrence of E
(c) non-occurrence of $E \Rightarrow$ non-occurrence of F
(d) none of the above implications holds
[IIT 1998]
(25) There are four machines and it is known that exactly two of them are faulty. They are tested, one by one, in a random order till both the faulty machines are identified. Then the probability that only two tests are needed is
(a) $\frac{1}{3}$
(b) $\frac{1}{6}$
(c) $\frac{1}{2}$
(d) $\frac{1}{4}$
[IIT 1998]
(26) If \bar{E} and \bar{F} are the complementary events of the events E and F respectively and if $0<P(F)<1$, then
(a) $P(E / F)+P(\bar{E} / F)=1$
(b) $P(E / F)+P(E / \bar{F})=1$
(c) $P(\bar{E} / F)+P(E / \bar{F})=1$
(d) $P(E / \bar{F})+P(\bar{E} / \bar{F})=1$
[IIT 1998]
(27) If for the three events A, B and C, P (exactly one of the events A or B occurs) $=P($ exactly one of the events B or C occurs $)=P($ exactly one of the events C or A occurs) $=p$ and P (all the three events occur sim Itaneously) $=p^{2}$, where $0<p<\frac{1}{2}$, then the probability of at least one of the three events A, B and C occurring is
(a) $\frac{3 p+2 p^{2}}{2}$
(b) $\frac{p+p^{2}}{4}$
(c) $\frac{p+p^{2}}{2}$
(d) $\frac{3 p+2 p^{2}}{4}$
[IIT 1996]
(28) Three of the six vertices of a regular exagon are chosen at random. The probability that the triangle with these three ert ces is equilateral equals
(a) $\frac{1}{2}$
(b) $\frac{1}{5}$
(c) $\frac{1}{10}$
(d) $\frac{1}{20}$
[IIT 1995]
(29) The probability of Indi winning a test match against West Indies is $1 / 2$. Assuming independence rom mach to match, the probability that in a 5 match series India's second win oc us a the third test is
(a) $\frac{1}{8}$
(b) $\frac{1}{4}$
(c) $\frac{1}{2}$
(d) $\frac{2}{3}$
[IIT 1995]
(30)

$$
\begin{aligned}
& 0<P(A)<1,0<P(B)<1 \text { and } P(A \cup B)=P(A)+P(B)-P(A) P(B) \text {, then } \\
& \begin{array}{ll}
\text { (a) } P(B / A)=P(B)-P(A) & \text { (b) } P\left(A^{\prime} \cup B^{\prime}\right)=P\left(A^{\prime}\right)+P\left(B^{\prime}\right) \\
\text { (c) } P\left(A \cup B^{\prime}\right)=P\left(A^{\prime}\right) P\left(B^{\prime}\right) & \text { (d) } P(A / B)=P(A)
\end{array}
\end{aligned}
$$

[IIT 1995]
(31) An unbiased die with faces marked 1, 2, 3, 4, 5 and 6 is rolled four times. Out of four face values obtained, the probability that the minimum face value is not less than 2 and the maximum face value is not greater than 5 is then,
(a) $\frac{16}{81}$
(b) $\frac{1}{81}$
(c) $\frac{80}{81}$
(d) $\frac{65}{81}$
[IIT 1993]
(32) Let E and F be two independent events. If the probability that both E and F happen is $\frac{1}{12}$ and the probability that neither E nor F happens is $\frac{1}{2}$, then $P(E)$ and $P(F)$ respectively are
(a) $\frac{1}{3}, \frac{1}{4}$
(b) $\frac{1}{2}, \frac{1}{6}$
(c) $\frac{1}{6}, \frac{1}{2}$
(d) $\frac{1}{4}, \frac{1}{3}$
[IIT 1993]
(33) India plays two matches each with West Indies and Australia. In any match, the probabilities of India getting points 0,1 and 2 are 0.45 , 50 and 0.50 respectively. Assuming that the outcomes are independent, the probability ot ladia getting at least 7 points is
(a) 0.8750
(b) 0.0875
(c) 0.0625
0.0250
[IIT 1992]
(34) For any two events A and B in a sample space
(a) $P\left(\frac{A}{B}\right) \geq \frac{P(A)+P(B)-1}{P(B)}, \quad P(B) \neq 0$ is always true
(b) $P(\bar{A})=P(A)-P(\bar{A}) P(B)$ does not hold
(c) $P(A \cup B)=1-P(\bar{A}) P(B)$, if A and B are independent
(d) $P(A \cup B)=1-P(A) P(\bar{B})$, if A and B are disjoint
[IIT 1991]
(35) If E and A are independent events such that $0<P(E)<1$ and $0<P(F)<1$, then
(a) E and F are mutually exclusive
(b) E nd F^{c} (the complement of event F) are independent and F^{c} are independent (d) $P(E / F)+P\left(E^{c} / F\right)=1$
[IIT 1989]

30 One hundred identical coins, each with probability, p, of showing us heads are tossed once. If $0<p<1$ and the probability of heads showing on 50 coins is equal to heads showing on 51 coins, then the value of p is
(a) $\frac{1}{2}$
(b) $\frac{49}{101}$
(c) $\frac{50}{101}$
(d) $\frac{51}{101}$
[IIT 1988]
(37) For two events A and $B, P(A \cup B)$ is
(a) not less than $P(A)+P(B)-1$
(b) not greater than $P(A)+P(B)$
(c) equal to $P(A)+P(B)-P(A \cup B)$
(d) equal to $P(A)+P(B)+P(A \cup B)$
(38) The probability that at least one of the events A and B occur is 0.6. If A and B occur simultaneously with probability 0.2 , then $P(\bar{A})+P(\bar{B})$ is
(a) 0.4
(b) 0.8
(c) 1.2
(d) 1.4
(e) none of these

IIT 1987]
(39) A student appears for tests I, II and III. The student is successtul if he passes either in tests I and II or tests I and III. The probabilities of the student passing in tests I, II and III are p, q and $\frac{1}{2}$ respectively. If the probability that the student is successful is $\frac{1}{2}$, then
(a) $p=q=1$
(b) $p=q=\frac{1}{2}$
(c) $p=1, q \quad 0$
(d) $p=1, q=\frac{1}{2}$
(e) none of these
[IIT 1986]
(40) Three identical dice are rolled. The probability that the same number will appear on each of them is
(a) $\frac{1}{6}$
(b) $\frac{1}{36}$
(c) $\frac{1}{18}$
(d) $\frac{3}{28}$
[IIT 1984]
(41) If M and N are two events, the probability that exactly one of them occurs is
(a) $P(M)+P(N)-2 P(M \cap N)$
(b) $\mathbf{P (M) + P (N) - P (M \cap N) ~}$
(c) $\mathbf{P}\left(M^{c}\right)+P\left(N^{c}\right)-2 P\left(M^{c} \cap N^{c}\right)$
(d) $P\left(M \cap N^{c}\right)+P\left(M^{c} \cap N\right)$
[IIT 1984]
(42) Fif een a upons are numbered 1, 2, ..., 15, respectively. Seven coupons are selected at random one at a time with replacement. The probability that the largest number appe ring on a selected coupon is 9 , is
(a) $\left(\frac{9}{16}\right)^{6}$
(b) $\left(\frac{8}{15}\right)^{7}$
(c) $\left(\frac{3}{5}\right)^{7}$
(d) none of these
[IIT 1983]
(43) If A and B are two events such that $P(A)>0$ and $P(B) \neq 1$, then $P(\bar{A} / \bar{B})$ is equal to
(a) $1-P(A / B)$
(b) $1-P(\bar{A} / B)$
(c) $\frac{1-P(A \cup B)}{P(\bar{B})}$
(d) $\frac{P(\bar{A})}{P(\bar{B})}$
[IIT 1982]
(44) Two fair dice are tossed. Let X be the event that the first die shows an even number, and Y be the event that the second die shows an odd number. The two events X and Y are
(a) mutually exclusive
(b) independent and mutually exclusive
(c) dependent
(d) none of these
[IIT 1979]
(45) There are n persons ($n \geq 3$), among whom are A and B, who ar made to stand in a row in random order. Probability that there are exactly $r(r \leq n-2)$ persons between A and B is
(a) $\frac{n-r}{n(n-1)}$
(b) $\frac{n-r-1}{n(n-1)}$
(c) $\frac{2(n-r-1)}{n(n-1}$
(d) $\frac{2 r}{n}$
(46) There are 8 players from which four teans ea bly two players are formed. What is the probability that two specific players are n one team?
(a) $\frac{1}{4}$
(b) $\frac{15}{28}$
(c) $\frac{1}{8}$
(d) $\frac{1}{7}$
(47) A natural number is selec ed from the first 20 natural numbers. The probability that $\frac{x^{2}-15 x+50}{x-15}<0$ is
(a) $\frac{1}{5}$
(b) $\frac{2}{5}$
(c) $\frac{3}{5}$
(d) $\frac{4}{5}$

Answers

1				4		5	6			8		9	10	11		12	13	1		15	16	17	18	19	20
b	c	c		b		c	d	b	b	a		d	a	b		d	c	d		d	d	a	a	a	
21	22	23		24	25	2		27	28		29	30		31	32	33		34		35	36	37	38	39	40
a	a	b		d	b	a,		a	c		b	c,		a	a,d	b		, c		,c,d	d	a,b,c	c	c	b
41		2	43	4		45	46		47		48	49	50		51	52	53		54	55	56	57	58	59	60
a,c,d		c	c	d	d	c	d		b																

