(1) Three houses are available in a locality. Three persons apply for the houses. Each applies for one house without consulting others. The probability that all the three apply for the same house is $(a) \frac{2}{9} \qquad (b) \frac{1}{9} \qquad (c) \frac{8}{9} \qquad (d) \frac{7}{9}$

(2) A random variable X has Poisson distribution with mean 2. Then (2) > 1.5) equals

(a)
$$\frac{2}{e^2}$$
 (b) 0 (c) 1 - $\frac{3}{e^2}$ (d) $\frac{3}{e^2}$ [AIEEE 2005]

(3) Let A and B be two events such that $P(\overline{A \cup B}) = \frac{1}{6}$, $P(A \cap B) = \frac{1}{4}$ and

- $P(\overline{A}) = \frac{1}{4}$, where \overline{A} stands for complement of event A. Then events A and B are
 - (a) equally likely and mutually exclusive
 - (b) equally likely but not independent
 - (c) independent but not equally ikely
 - (d) mutually exclusive and ind pendent [AIEEE 2005]
- (4) Let $x_1, x_2, ..., x_n$ be n observations such that $\sum x_i^2 = 400$ and $\sum x_i = 80$. Then a possible value of n among the following is

(a) 15 (b) 18 (c) 9 (d) 12 [AIEEE 2005]

(5) Pob bility that A speaks truth is $\frac{4}{5}$ while this probability for B is $\frac{3}{4}$. The probability that they contradict each other when asked to speak on a fact is (a) $\frac{3}{20}$ (b) $\frac{1}{5}$ (c) $\frac{7}{20}$ (d) $\frac{4}{5}$ [AIEEE 2004]

(6) The mean and variance of a random variable x having a binomial distribution are 4 and 2 respectively. Then P(x=1) is

(a)
$$\frac{37}{256}$$
 (b) $\frac{219}{256}$ (c) $\frac{128}{256}$ (d) $\frac{28}{256}$

X ·	1	2	3	4	5	6	7	8
n(X):	0.15	0.23	0 12	0 10	0.20	0.08	0.07	0.05
For the ev P(E∪F) (a) 0.87	vents E = is (b)	(Xisa)	prime nun (c) 0.35	nber} and	F = { X	< 4 }, the	protabil	NEEE 2004]
8) The even P(B)= in the int	ts A, B, (<u>1 - x</u> and erval	Caremu dP(C)=	tually excl = <u>1 - 2x</u> 2 .	usive even	nts such of possible	hat P(A	$= \frac{3x+3}{3}$	<u>1</u> ,
(a) $\left[\frac{1}{3},\right]$	$\left[\frac{1}{2}\right]$ (t	$\left[\frac{1}{3},\frac{2}{3}\right]$] (c)	$\left[\begin{array}{c} 4 & \frac{13}{3} \\ 3 & \frac{13}{3} \end{array}\right]$	(d)[0,1]	[/	AIEEE 2003]
(9) Five how them. The	rses are i e probabili	n a race. ty that Mr	Mr A A select	elects two ed the win	of the h	norses at se is	random	and bets on
(a) <u>4</u> 5	(b) -	3 5 (c		(d) <u>2</u> 5			[4	AIEEE 2003]
(10) The mea and 2 r	an and va espective	riance of 7 Jnen, F	a random P(X = 1)	variable is	X havin	g a binon	nial distri	bution are 4
(a) - 32	(b)	1 16	(c) <mark>1</mark> 8	(d)	Ī		[4	AIEEE 2003]
(11) The prol respecti	babilities of vely $\frac{1}{10}$,	of a stude $\frac{3}{5}$ and $\frac{2}{4}$	nt getting $\frac{1}{4}$. The pr	Ist, IInd obability,	and IIIrd that a stu	division dent fails	in an exa in the ex	mination are amination is
(a) $\frac{19}{20}$	7 0 (b)) <u>27</u> 100	(c) <u>83</u> 10	<u>3</u> (d) $\frac{33}{200}$		[/	AIEEE 2002]
(12) A bag o balls. O the prol	contains ne bag is bability tha	4 red and selected at the ball	3 black at random drawn is	balls. A s h. If from red is	second ba the select	g contain ed bag or	s 2 red ne ball is	and 4 black drawn, then

(a)
$$\frac{1}{42}$$
 (b) $\frac{3}{41}$ (c) $\frac{9}{42}$ (d) $\frac{19}{42}$ [AIEEE 2002]

(13) A box contains 6 nails and 10 nuts. Half of the nails and half of the nuts are rusted. If one item is chosen at random, then the probability that it is rusted or a nail is

(a)
$$\frac{3}{16}$$
 (b) $\frac{5}{16}$ (c) $\frac{11}{16}$ (d) $\frac{14}{16}$ [AIEEE 2002]

(14) A bag contains 5 brown and 4 white socks. A man pulls out two socks. probability that both the socks are of the same colour is

(a)
$$\frac{9}{108}$$
 (b) $\frac{18}{108}$ (c) $\frac{36}{108}$ (d) $\frac{48}{108}$ [AIEEE 2002]

(15) A 6-faced fair dice is rolled repeatedly till 1 appears for the first time. The probability that the dice is rolled for even number of times is

(a)
$$\frac{1}{6}$$
 (b) $\frac{5}{36}$ (c) $\frac{6}{11}$ (d) $\frac{5}{11}$ [IIT 2005]

(16) Three distinct numbers are chosin randomly from first 100 natural numbers, then the probability that all are divisible by 2 and 3 both is

(a)
$$\frac{4}{33}$$
 (b) $\frac{4}{35}$ (c) $\frac{4}{25}$ (d) $\frac{4}{1155}$ [IIT 2004]

(17) Two numbers are chosen from { 1, 2, 3, 4, 5, 6 } one after another without replacement Find the probability that the smaller of the two is less than 4.

(b)
$$\frac{1}{15}$$
 (c) $\frac{1}{5}$ (d) $\frac{14}{15}$ [IIT 2003]

18) If
$$P(B) = \frac{3}{4}$$
, $P(\overline{A} \cap B \cap \overline{C}) = \frac{1}{3}$ and $P(A \cap B \cap \overline{C} = \frac{1}{3}$, then $P(B \cap C)$ is

(a)
$$\frac{1}{12}$$
 (b) $\frac{3}{4}$ (c) $\frac{5}{12}$ (d) $\frac{23}{36}$ [IIT 2003]

(19) If the integers m and n are chosen at random between 1 and 100, then the probability that the number of the form 7^m + 7ⁿ is divisible by 5 equals

a)
$$\frac{1}{4}$$
 (b) $\frac{1}{7}$ (c) $\frac{1}{8}$ (d) $\frac{1}{49}$ [IIT 1999]

[||T 1999]

1998]

<u>14 - PROBABILITY</u> (Answers at the end of all questions)

(20) The probabilities that a student passes in Mathematics, Physics and Chemistry are m, p and c respectively. Of these subjects, the student has a 75% chance of passing in at least one, a 50% chance of passing in at least two and 40% chance of passing in exactly two. Which of the following relations are true?

(a)
$$p + m + c = \frac{19}{20}$$
 (b) $p + m + c = \frac{27}{20}$
(c) $pmc = \frac{1}{10}$ (d) $pms = \frac{1}{4}$

- (21) If from each of the three boxes containing 3 white and black, 2 white and 2 black, 1 white and 3 black balls, one ball is drawn t random, then the probability that 2 white and 1 black ball will be drawn is
 - (a) $\frac{13}{32}$ (b) $\frac{1}{4}$ (c) $\frac{1}{32}$ (d) $\frac{1}{16}$ [IIT 1998]
- (22) A fair coin is tossed repeatedly. If this appears on first four tosses, then the probability of head appearing on fifth toss equals

(a)
$$\frac{1}{2}$$
 (b) $\frac{1}{32}$ (c) $\frac{31}{32}$ (d) $\frac{1}{5}$ [III

(23) Seven white balls and hree black balls are randomly placed in a row. The probability that no two block balls are placed adjacently equals

a)
$$\frac{1}{2}$$
 (b) $\frac{7}{15}$ (c) $\frac{2}{15}$ (d) $\frac{1}{3}$ [IIT 1998]

1) **E** and F are events with $P(E) \leq P(F)$ and $P(E \cap F) > 0$, then

- (a) occurrence of $E \Rightarrow$ occurrence of F
- b) occurrence of $F \Rightarrow$ occurrence of E
- c) non-occurrence of $E \Rightarrow$ non-occurrence of F
- (d) none of the above implications holds

- [IIT 1998]
- (25) There are four machines and it is known that exactly two of them are faulty. They are tested, one by one, in a random order till both the faulty machines are identified. Then the probability that only two tests are needed is

(a)
$$\frac{1}{3}$$
 (b) $\frac{1}{6}$ (c) $\frac{1}{2}$ (d) $\frac{1}{4}$ [IIT 1998]

- (26) If \overline{E} and \overline{F} are the complementary events of the events E and F respectively and if 0 < P(F) < 1, then (a) $P(E/F) + P(\overline{E}/F) = 1$ (b) $P(E/F) + P(E/\overline{F}) = 1$ (c) $P(\bar{E}/F) + P(E/\bar{F}) = 1$ (d) $P(E/\bar{F}) + P(\bar{E}/\bar{F}) = 1$ 117 1998 1 (27) If for the three events A, B and C, P (exactly one of the events A or B occurs) = P (exactly one of the events B or C occurs) = P (exactly one of the events C or A occurs) = p and P (all the three events occur simultaneously) = p^2 , where 0 , then the probability of at least one of the three events A, B and Coccurring is (a) $\frac{3p+2p^2}{2}$ (b) $\frac{p+p^2}{4}$ (c) $\frac{p+p^2}{4}$ [IIT 1996] (28) Three of the six vertices of a regular exagon are chosen at random. The probability that the triangle with these three ertces s equilateral equals (a) $\frac{1}{2}$ (b) $\frac{1}{5}$ (d) $\frac{1}{20}$ [IIT 1995] (29) The probability of Indi winning a test match against West Indies is 1/2. Assuming independence from mach to match, the probability that in a 5 match series India's second win oc us a the third test is $(b) \frac{1}{4}$ (c) $\frac{1}{2}$ (d) $\frac{2}{3}$ [IIT 1995] P(A) < 1, 0 < P(B) < 1 and $P(A \cup B) = P(A) + P(B) - P(A)P(B)$, then (30) (a) P(B/A) = P(B) - P(A) (b) $P(A' \cup B') = P(A') + P(B')$ (c) $P(A \cup B') = P(A')P(B')$ (d) P(A/B) = P(A)[IIT 1995]
- (31) An unbiased die with faces marked 1, 2, 3, 4, 5 and 6 is rolled four times. Out of four face values obtained, the probability that the minimum face value is not less than 2 and the maximum face value is not greater than 5 is then,

(a)
$$\frac{16}{81}$$
 (b) $\frac{1}{81}$ (c) $\frac{80}{81}$ (d) $\frac{65}{81}$ [IIT 1993]

(32) Let E and F be two independent events. If the probability that both E and F happen is $\frac{1}{12}$ and the probability that neither E nor F happens is $\frac{1}{2}$, then P(E) and P(F) respectively are

(a)
$$\frac{1}{3}$$
, $\frac{1}{4}$ (b) $\frac{1}{2}$, $\frac{1}{6}$ (c) $\frac{1}{6}$, $\frac{1}{2}$ (d) $\frac{1}{4}$, $\frac{1}{3}$

(33) India plays two matches each with West Indies and Australia, in any match, the probabilities of India getting points 0, 1 and 2 are 0.45, 50 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is

(34) For any two events A and B in a sample space

(a)
$$P\left(\frac{A}{B}\right) \ge \frac{P(A) + P(B) - 1}{P(B)}$$
, $P(B) \neq 0$ is always true

(b) $P(\overline{A}) = P(A) - P(\overline{A})P(B)$ does not hold

(c) $P(A \cup B) = 1 - P(A) P(B)$, if A and B are independent

(d) $P(A \cup B) = 1 - P(A)P(\overline{B})$, if A and B are disjoint [IIT 1991]

(35) If E and \mathbf{R} are independent events such that 0 < P(E) < 1 and 0 < P(F) < 1, then

- (a) E and F are mutually exclusive
- (b) E nd F^{c} (the complement of event F) are independent (c) E^{c} and F^{c} are independent (d) $P(E/F) + P(E^{c}/F) = 1$ [IIT 1989]

One hundred identical coins, each with probability, p, of showing us heads are tossed once. If 0 and the probability of heads showing on 50 coins is equal toheads showing on 51 coins, then the value of p is

(a)
$$\frac{1}{2}$$
 (b) $\frac{49}{101}$ (c) $\frac{50}{101}$ (d) $\frac{51}{101}$ [IIT 1988]

(37) For two events A and B, $P(A \cup B)$ is

- (a) not less than P(A) + P(B) 1 (b) not greater than P(A) + P(B)
- (c) equal to $P(A) + P(B) P(A \cup B)$ (d) equal to $P(A) + P(B) + P(A \cup B)$ [IIT 1988]

IT 1993 1

- (38) The probability that at least one of the events A and B occur is 0.6. If A and B occur simultaneously with probability 0.2, then $P(\overline{A}) + P(\overline{B})$ is
 - (a) 0.4 (b) 0.8 (c) 1.2 (d) 1.4 (e) none of these [1] 1987]
- (39) A student appears for tests I, II and III. The student is successful if he passes either in tests I and II or tests I and III. The probabilities of the student passing in tests I, II and III are p, q and $\frac{1}{2}$ respectively. If the probability that the student is successful is $\frac{1}{2}$, then (a) p = q = 1 (b) p = q = $\frac{1}{2}$ (c) p = 1, q 0 (d) p = 1, q = $\frac{1}{2}$ (e) none of these [IIT 1986]
- (40) Three identical dice are rolled. The probability that the same number will appear on each of them is

(a)
$$\frac{1}{6}$$
 (b) $\frac{1}{36}$ (c) $\frac{1}{18}$ (d) $\frac{3}{28}$ [IIT 1984]

(41) If M and N are two events, the probability that exactly one of them occurs is

a) $\left(\frac{9}{16}\right)^6$

(a)
$$P(M) + P(M) + 2P(M \cap N)$$
 (b) $P(M) + P(N) - P(M \cap N)$
(c) $P(M^{c}) + P(N^{c}) - 2P(M^{c} \cap N^{c})$ (d) $P(M \cap N^{c}) + P(M^{c} \cap N)$ [IIT 1984]

(42) Fit een c upons are numbered 1, 2, ..., 15, respectively. Seven coupons are selected at random one at a time with replacement. The probability that the largest number appearing on a selected coupon is 9, is

(b)
$$\left(\frac{8}{15}\right)^7$$
 (c) $\left(\frac{3}{5}\right)^7$ (d) none of these [IIT 1983]

(43) If A and B are two events such that P(A) > 0 and $P(B) \neq 1$, then $P(\overline{A}/\overline{B})$ is equal to

(a)
$$1 - P(A/B)$$
 (b) $1 - P(A/B)$
(c) $\frac{1 - P(A \cup B)}{P(\overline{B})}$ (d) $\frac{P(\overline{A})}{P(\overline{B})}$ [IIT 1982]

- (44) Two fair dice are tossed. Let X be the event that the first die shows an even number, and Y be the event that the second die shows an odd number. The two events X and Y are
 - (a) mutually exclusive
 - (c) dependent

x - 15

- (b) independent and mutually exclusive (d) none of these
 - 9 [IIT 1979]

(d) 2r n

(45) There are n persons (n ≥ 3), among whom are A and B, who are made to stand in a row in random order. Probability that there are exactly r (r ≤ n - 2) persons between A and B is

(a)
$$\frac{n-r}{n(n-1)}$$
 (b) $\frac{n-r-1}{n(n-1)}$ (c) $\frac{2(n-r-1)}{n(n-1)}$

(46) There are 8 players from which four teams each of two players are formed. What is the probability that two specific players are none team?

(a)
$$\frac{1}{4}$$
 (b) $\frac{15}{28}$ (c) $\frac{1}{8}$ (d) $\frac{1}{7}$

(47) A natural number is selected from the first 20 natural numbers. The probability that $\frac{x^2 - 15x + 50}{x^2 - 15x + 50} < 0$ is

(a)
$$\frac{1}{5}$$
 (b) $\frac{2}{5}$ (c) $\frac{3}{5}$ (d) $\frac{4}{5}$

<u>Answers</u>

		-													-	-				
1	2	3	4		5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
b	С	С	b		С	d	b	а	d	а	b	d	С	d	d	d	а	а	а	b
21	22	23	24	25	5 2	6 2	27 2	8 29	30) 3'	1 3	2 3	3 34	4 🛛	35	36	37	38	39	40
а	а	b	d	b	a,	di	a c	b	C,C	a k	a,	d k) a,	c b	,c,d	d	a,b,c	С	С	b
41	4	2 4	3	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
a,c,	do		С	d	С	d	b													
					•					•										•