(1) If $x=\sum_{n=0}^{\infty} a^{n}, y=\sum_{n=0}^{\infty} b^{n}, \quad z=\sum_{n=0}^{\infty} c^{n}, \quad$ where a, b, c are in A.P. and $|a|<1,|b|<1,|c|<1$, then x, y, z are in
(a) G.P.
(b) A.P.
(c) Arithmetic-Geometric Progression
(d) H.P.
[AIEEE 2005]
(2) The sum of the series $1+\frac{1}{4 \cdot 2!}+\frac{1}{16 \cdot 4!}+\frac{1}{64 \cdot 6!}+\ldots \ldots . .{ }^{\text {d }}$ nf. is
(a) $\frac{e-1}{\sqrt{e}}$
(b) $\frac{e+1}{\sqrt{e}}$
(c) $\frac{e-1}{2 \sqrt{e}}$
(d) $\frac{e+1}{2 \sqrt{e}}$
[AIEEE 2005]
(3) If $S_{n}=\sum_{r=0}^{n} \frac{1}{{ }^{n} C_{r}}$ and $t_{n}=\sum_{r=0}^{n} \frac{r}{{ }^{n} C}$, then $\frac{t_{n}}{S_{n}}=$
(a) $\frac{1}{2} n$
(b) $\frac{1}{2} n-1$
(c) n
(d) $\frac{2 n-1}{2}$
[AIEEE 2004]
(4) Let T_{r} be the rth term of an A.P whose first term is a and common difference is d. If for some positive integers $m, n, m \neq n, T_{m}=\frac{1}{n}$ and $T_{n}=\frac{1}{m}$, then
(a) 0
(b) $1 \quad$ (c) $\frac{1}{m n}$
(d) $\frac{1}{m}+\frac{1}{n}$
[AIEEE 2004]
(5) The sum of the trst n terms of he series
$1^{2}+22^{2}+3^{2}+2 \cdot 4^{2}+5^{2}+2 \cdot 6^{2}+\ldots \ldots$ is $\frac{n(n+1)^{2}}{2}$ when n is
ven. When n is odd, the sum is
(a) $\frac{3 n(n+1)}{2}$
(b) $\frac{n^{2}(n+1)}{2}$
(c) $\frac{n(n+1)^{2}}{4}$
(d) $\left[\frac{n(n+1)}{2}\right]^{2}$
[AIEEE 2004]
(6) The sum of the series $\frac{1}{2!}+\frac{1}{4!}+\frac{1}{6!}+\ldots .$. is
(a) $\frac{e^{2}-1}{2}$
(b) $\frac{(e-1)^{2}}{2 e}$
(c) $\frac{e^{2}-1}{2 e}$
(d) $\frac{e^{2}-2}{e}$
[AIEEE 2004]
(7) The sum of the series $\frac{1}{1 \cdot 2}-\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}-\ldots \ldots \infty$ is
(a) $\log _{e} 2$
(b) $2 \log _{e} 2$
(c) $\log _{e} 2-1$
(d) $\log _{e} \frac{4}{e}$

AIEEE 2003]
(8) If the sum of the roots of the quadratic equation $a x^{2}+b x+c=0$ is equal to the sum of the squares of their reciprocals, then $\frac{a}{c}, \frac{b}{a}, \frac{c}{b}$ are in
(a) A. P.
(b) G. P.
(c) H. P.
(d)
A. G. P
[AIEEE 2003]
(9) The value of $1.2 .3+2.3 .4+3.4 .5+\ldots+n$ terms is
(a) $\frac{n(n+1)(n+2)(n+3)}{12}$
(b) $\frac{n(n+1)(n+2)(n+3)}{3}$
(c) $\frac{n(n+1)(n+2)(n+3)}{4}$
(d) $\frac{n+2)(n+3)(n+4)}{6}$
[AIEEE 2002]
(10) If the third term of an A.P. s 7 and its 7 th term is 2 more than three times of its third term, then the sum 0 its st 20 terms is
(a) 228
(b) 74
(c) 740
(4) 1090
[AIEEE 2002]
(11) An infinite G.P. h s first term ' x ' and sum 5 , then
(a) $x \geqq 10$
(b) $0<x<10$
(c) $\mathrm{x}<-10$
(d) $-10<x<0$
\{ IIT 2004 \}
(12) If $a_{1}, a_{2}, \ldots . . a_{n}$ are positive real numbers whose product is a fixed number c, then the minimum value of $a_{1}+a_{2}+\ldots+a_{n-1}+2 a_{n}$ is
(a) $n(2 c)^{1 / n}$
(b) $(n+1) c^{1 / n}$
(c) $2 \mathrm{nc}^{1 / n}$
(d) $(n+1)(2 c)^{1 / n}$
[IIT 2002]
(13) Suppose a, b, c are in A. P. and a^{2}, b^{2}, c^{2}, are in G. P. If $a<b<c$ and $a+b+c=\frac{3}{2}$, then the value of a is
(a) $\frac{1}{2 \sqrt{2}}$
(b) $\frac{1}{2 \sqrt{3}}$
(c) $\frac{1}{2}-\frac{1}{\sqrt{3}}$
(d) $\frac{1}{2}-\frac{1}{\sqrt{2}}$
[IIT 2002]
(14) If the sum of the first $2 n$ terms of the A. P. $2,5,8, \ldots \ldots$, is equal to the sum of the first n terms of the A.P. 57, 59, 61,, then n equals
(a) 10
(b) 12
(c) 11
(d) 13
[IIT 2001]
(15) If the positive numbers a, b, c, d are in A. P., then $a b c$, $a b d$, $a c d$, bcd ar
(a) not in A. P./
G. P. / H. P.
(b) in A. P.
(c) in
G. P.
(d) i) P .
[IIT 2001]
(16) If a, b, c, d are positive real numbers such tht $a+b+c+d=2$, then $M=(a+b)(c+d)$ satisfies the relation
(a) $0 \leq M \leq 1$
(b) $1 \leq M \leq 2$
(c) $2 \leq M$
≤ 3
(d) $3 \leq M \leq 4$
[IIT 2000]
(17) Consider an infinite geometric series with first erm a and common ratio r. If its sum is 4 and the second term is $\frac{3}{4}$, then a nd r are
(a) $\frac{4}{7}, \frac{3}{7}$
(b) 2, $\frac{3}{8}$
(c) $\frac{3}{2}, \frac{1}{2}$
(d) $3, \frac{1}{4}$
[IIT 2000]
(18) Let a_{1}, a_{2}, \ldots, be h. A.P. and $h_{1}, h_{2}, \ldots, h_{10}$ be in H. P. If $a_{1}=h_{1}=2$ and $a_{10}=h_{10}=3$, then $4 h_{7}$ is
(a) 2
(b) 3
(c) 5
(d) 6
[IIT 1999]
(19) for a positive integer $n, a(n)=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots . .+\frac{1}{2^{n}-1}$, then
(a) a(100) ≤ 100
(b) a(100) > 100
(c) a(200) ≤ 100
(d) a(200) >100
[IIT 1999]
(20) Let T_{r} be the r th term of an A.P., for $r=1,2,3, \ldots$ If for some positive integers m, n, we have $T_{m}=\frac{1}{n}$ and $T_{n}=\frac{1}{m}$, then $T_{m n}$ equals
(a) $\frac{1}{m n}$
(b) $\frac{1}{m}+\frac{1}{n}$
(c) 1
(d) 0
[IIT 1998]
(21) If $x>1, y>1, z>1$ are in G. P., then $\frac{1}{1+\ln x}, \frac{1}{1+\ln y}, \frac{1}{1+\ln z}$ are in
(a) A. P.
(b) H. P.
(c)
G. P.
(d) None of these
[IT 1998]
(22) If $n>1$ is a positive integer, then the largest integer m such that $\left(n^{m}+1\right)$ divides $\left(1+n+n^{2}+\cdots+n^{127}\right)$ is
(a) 127
(b) 63
(c) 64
(d) 32
[IIT 1995]
(23) The product of n positive numbers is unity. Then thei sum is
(a) a positive integer
(b) divisible by n
(c) equal to $n+\frac{1}{n}$
(d) never less than
[IIT 1991]
(24) The sum of n terms of the se es $\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\ldots .$. is equal to
(a) $2^{n}-n-1$
(b)
$1-2-n$
(c) $n+2^{-n}+1$
(d) $2^{n}-1$
[IIT 1988]
(25) If the first and he $(2 n-1)$ th terms of an A.P., G.P. and H. P. are equal and their nth terms are a, c respectively, then
(a) $a=b=c$
(b) a \geq b \geq c
(c) $a+c=b$
(d) ac- $b^{2}=0$
[IIT 1988]
(26) If a, d, d and p are distinct real numbers such that
$\left(+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right) \leq 0$, then a, b, c and d (a) are in A.P. (b) are in G.P. (c) are in H. P. (d) satisfy ab $=$ cd [IIT 1987]
(27) If a, b, c are in G. P., then the equations $a x^{2}+2 b x+c=0$ and $d x^{2}+2 e x+f=0$ have a common root if $\frac{d}{a}, \frac{e}{b}, \frac{f}{c}$ are in
(a) AP
(b) GP
(c) HP
(d) none of these
[IIT 1985]
(28) The third term of a geometric progression is 4 . The product of the first five terms is
(a) 4^{3}
(b) 4^{5}
(c) 4^{4}
(d) none of these
[IIT 1982]
(29) If $x_{1}, x_{2}, \ldots \ldots, x_{n}$ are any real numbers and n is any positive integer, t en
(a) $n \sum_{i=1}^{n} x_{i}{ }^{2}<\left(\sum_{i=1}^{n} x_{i}\right)^{2}$
(b) $\sum_{i=1}^{n} x_{i}{ }^{2} \geq\left(\sum_{i=1}^{n} x_{i}\right)^{2}$
(c) $\sum_{i=1}^{n} x_{i}{ }^{2} \geq n\left(\sum_{i=1}^{n} x_{i}\right)^{2}$
(d) none of these
[IIT 1982]
(30) If x, y and z are the p th, q th and r th erm respectively of an A.P. and also of a G. P., then $x^{y-z} y^{z-x} z^{x-y}$ is equal to
(a) $x y z$
(b) 0
(c) 1
(d) none of these
[IIT 1979]
(31) $\frac{1}{1+\sqrt{x}}, \frac{1}{1-x}$ and $\sqrt{x-\sqrt{x}}$ are consecutive terms of a series in
(a)
H. P.
(b)
G. P
(c)
A. P.
(d)
A. P., G. P.
(32) If $S_{n}=n P+\frac{1}{2} n(n-1) Q$, where S_{n} denotes the sum of the first n terms of an $A \cdot P$ then the common difference is
a) $P+Q$
(b) $2 P+3 Q$
(c) $2 Q$
(d) Q
(33) If $S_{n}=n^{3}+n^{2}+n+1$, where S_{n} denotes the sum of the first n terms of a series and $t_{m}=291$, then $m=$
(a) 10
(b) 11
(c) 12
(d) 13
(34) If the first term minus third term of a G. P. $=768$ and the third term minus seventh term of the same G.P. = 240, then the product of first 21 terms =
(a) 1
(b) 2
(c) 3
(d) 4
(35) If the sequence $a_{1}, a_{2}, a_{3}, \ldots a_{n}$ form an A.P., then $a_{1}{ }^{2}-a_{2}{ }^{2}+a_{3}{ }^{2}-\ldots+a_{2 n-1}{ }^{2}-a_{2 n}{ }^{2}=$
(a) $\frac{n}{2 n-1}\left(a_{1}{ }^{2}-a_{2 n}{ }^{2}\right)$
(b) $\frac{2 n}{n-1}\left(a_{2 n}{ }^{2}-a_{1}{ }^{2}\right)$
(c) $\frac{n}{n+1}\left(a_{1}{ }^{2}+a_{2 n}{ }^{2}\right)$
(d) None of these
(36) If T_{r} denotes r rh term of an H.P. and $\frac{T_{1}-T_{4}}{T_{6}-T_{9}}=7$, en $\frac{T_{2}-T_{5}}{T_{11}-T_{8}}=$
(a) 5
(b) 6
(c) 7
(d) 8
(37) The sum of any ten positive real numbers multiplied by the sum of their reciprocals is
(a) ≥ 10
(b) ≥ 50
(c) ≥ 100
(d) ≥ 200
(38) If S_{n} denotes the sum of ir $t n$ terms of an A.P. and $S_{2 n}=3 S_{n}$, then the ratio $\frac{S_{3 n}}{S_{n}}$ is equal to
(a) 4
(b) 6
(c) 8
(d) 10
(39) If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ a three unequal positive quantities in H. P., then
(a) $a^{10} c^{10}<2 b^{10}$
(c) $c^{3}<2 b^{3}$
(b) $\mathrm{a}^{20}+\mathrm{c}^{20}<2 \mathrm{~b}^{20}$
(d) none of these

Answers

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
d	d	a	a	b	b	d	c	c	c	b	a	d	c	d	a	d	d	a,d	c
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
b	c	d	c	b,d	b	a	b	d	c	c	d	a	a	a	b	c	b	d	

